[박수칠] 미분계수와 함수 극한의 관계에 대하여
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
왜들어옴?
-
즐겁다 삿포로 4
-
행복하네 2
ㅇㅁㅇ
-
10주파로 운동좀 해야겠다
-
나와하나가되자
-
안믿는사람끼리 지옥가서 쿠데타 일으키고 하늘나라도 민주화시켜놨을거같음 걱정마셈 ㅇㅇ...
-
. 18
이게 벌써 5년 전인가
-
알려드림
-
7기 아웃풋 8기 아웃풋 사실 별 차이 없음
-
ㅅㅂ
-
무식을 들켰을때임 어떤분야든 남들보다 조금 부족하다는것을 들켰을때의 수치심이 나를...
-
내 ㅇㅈ보기전에 내글만보고 어떻게 생겼을거라 예측했음?
-
맞팔 안구함 2
ㄱㄱ
-
반박하려면 보닌보다 덕코 많아야됨
-
Mbti맞춰봐요 7
뭐같음
-
학원물. 남주는 친구 없고 여주는 씹인싸. 서로 좋아하는데 여주가 개씹혐성츤데레라서...
-
나의 앰비티아이 18
그건 비밀이란거야
-
진짜 자러감 13
다들 굿나잇이다.
-
고3때 열등감 때문에 노베로 시작해서 재수까지 했는데 아쉬움이 너무 남는것...
-
어째서....
-
커뮤에 확실히 2
istp랑 intp가 많은듯
-
사탐런 질문 0
이제 고3 올라가는 07년생입니다 작년부터 사탐런에 대해 얘기가 많더니 지금은...
-
iStJ 있나요 1
-
istp는하나도없네 고독하다
-
임신서기석 10
ㅇ.
-
나도 칼럼 써봄 22
풉
-
스토리짜도 다 흔한 클리셰범벅이야
-
찐따새끼라는나쁜말은ㄴㄴ
-
이거 어케 하는 거냐 ㅋㅋㅋ
-
? 진짜 모름
-
좋아하는 소설이 7
완결직전이라는 것은 너무 슬퍼요
-
그 두개가 어떻게 공존할 수 있는지는 모르겠는데 아무튼 그럼 비의도적 싸가지없음이라 그런듯
-
사실 생각보다는 정상일수도
-
INTP 손~~ 17
넵
-
이 오르비언이 현생에서 착한 사람인지 아닌지 대충 알거같음
-
예비고1 이고 고2모고는 80후반 정도떠요 (고3건 학원에서 아직) 너무 감독해만...
-
Mbti 메타다 4
전 infj입니다 그 유명한 T F 반반임
-
1년만 더 질게..
-
현생이미지 예측좀 13
-
조선시대에 공주였던여자애가 궁에서일하는궁녀와사랑에빠짐 둘이사랑해서 은밀하게...
-
내 mbti 예측 ㄱㄱ 15
내일 다시 검사해볼거니까 미리 예측해주세오
-
이런 건 내 열등감일 가능성이 높냐 아니면 뇌피셜레이더가 작동해서 거를 사람 거르는거임?
-
고인물들은 안 봐도 됨 화2가 처음이거나 미숙하면 농도 관련된 문제를 풀 때 용질을...
-
대신 틀 인정하는 거임
-
대한민국 중앙지검 부장검사 대유빈
-
야수의심장으로 한 -30퍼까진 괜찮다고봄
좋은글입니다!
감사합니다! ^^
소위 말하는 '야메'같아 보이는 나만의 공식도 논술에서 제대로 증명을 해내면 사용해도 되겠지요?
글쎄요... 채점 기준에 대해 잘 모르지만
교과 과정에 충실하게 작성한 것이
모범 답안이라 생각합니다.
특히 논술의 경우에는
문제 해결에 필요한 교과 과정 내용을 제시문의 형태로 주기 때문에
그 테두리 내에서 해결을 해야 좋은 점수를 받을 수 있을 겁니다.
갓수칠
언제 들어도 좋은 말이네요~ ^^
이걸 적절히 연습할 수 있는 문제가 예전 사관학교 ㄱㄴㄷ문제에 있죠
아 그런가요?
요즘 출제 경향에선 살짝 벗어난 감이 있지만
개념 이해에 참 좋은 유형이죠~
뭐야
미정계수구하는거분명히배웠는데왜처음부터뭔소린지하나도모르겠지???
ㅠㅠ
미분계수의 정의 바로 다음에 나오는
함수의 극한 유형을 복습하면 됩니다~ ^^
사실 많은 사람들이 아무 관계가 없는 내용인데 미분가능성을 전제로 두고서 막 미분하는 경향이 있는데 그런 사람에게 보여주면 아주 좋은 글인것같습니다!
감사합니다.
개념에 대한 이해가 부족한 상태에서 문제를 풀 때 위험한 것이
'이렇게 해서 답을 맞췄으니 다음에도 똑같이 하면 되겠지'
라고 생각하는 걸 겁니다.
답을 맞췄더라도 미심쩍은 부분이 있다면
이유를 꼭 확인해야 되겠죠.
앞으로도 개념을 이해하는데 도움이 될 만한 글
종종 올리겠습니다.
딱저네요..미분가능성 전제해서 막미분..
이관데 이런개념들부족하면 수1을다시보는게맞겠죠?
h가0으로갈때 h^2이 0+로가는건 왜그런건가요..
(실수)²≥0이기 때문이죠.
h→0이면 h²→0이고, h≠0이니까 h²>0입니다.
따라서 h²→0+가 됩니다.
함수 y=x²의 그래프를 그리고 x→0일 때 y값의 변화를 보면
0보다 크면서 0으로 다가가기 때문이기도 하구요.
그리고 본문의 내용들에 대한 이해가 부족하면 수학1을 다시 보기보다는
공부할 때 디테일 있게 하는 것이 중요할 것 같습니다.
개념 이해한 다음 다양한 유형을 풀 때 맞췄다고 그냥 넘어가지 말고,
해설을 한줄한줄 보면서 왜 이 방향으로 가는지 자꾸 따지는 거죠.
' f"(x)>0이면 f(x)가 아래로 볼록하다 ' 라고 외우지 말고
' f"(x)>0이면 f'(x)가 증가하고, f'(x)가 증가하면 접선 기울기가
점점 증가하는거니까 f(x)가 아래로 볼록하다 ' 라는 식으로
중간 과정을 집어 넣으면서 이해하는 것이 중요합니다.
갓수칠님이 마지막에 말하신방식대로 미2공부를 다 끝냈습니다
근데 개념이부족하다는 찝찝함과 불안감은 왜항상있는걸까요..?
미2정석을 꼼꼼히봐도 개념을확실히안다는 느낌이안오더라고요
예를들어 역함수문제를풀때 일대일대응이라는것에 꽂혀서풀다가 문제가안풀림을알고
10분고민뒤에 단조증가 단조감소의 특징을 기억해내고 문제에적용합니다
풀었는데도 찝찝하고.. 체크해놧다가 다시풀어야하나 생각도들고..
개념을 완벽하게 안다는 것을 제자신이 어떻게 알수있을까요?
답변해주시면 정말감사하겠습니다 ㅠㅠ
어떤 책으로 공부하든, 개념을 완벽하게 알 수는 없습니다.
중요한 것은 반복하면서 이해도를 끌어올리는 것이죠.
문제 풀 때도 마찬가집니다.
내가 이해한 것보다 높은 수준을 요구하는 문제도 있고,
'내가 잘못 이해했구나'라는 깨달음을 주는 문제도 있습니다.
이럴 때 필요한 것이 필기고 정리죠.
지금 이해했고, 풀 수 있다 하들 나중에도 그럴거라는 보장은 없습니다.
개념 공부하면서, 문제 풀면서 새롭게 깨달은 것이 있으면 꼭 기록해야죠.
그리고 완벽해야한다는 강박 관념보다는
빈 부분이 생기면 꼭 보충해야 한다는 강박 관념을 가져야 합니다.
수학은 '이 정도면 됐다'라 생각하는 순간 망하거든요.
개념 복습 안하고, 문제 덜 풀면 금방 감이 떨어집니다.
이 부분 개념 복습할때 항상 힘들었는데 자세한 설명 감사드립니다.
앞으로도 특정 개념/유형에 대한 해설을 종종 올릴 예정입니다.
많은 관심 부탁드립니다~ ^^
WOW 시원하네요 진짜 최고네요 미분계수의 정의에 따르면 저 풀이가 안되는데 저렇게 푼 풀이가 왜 있는지 엄청 궁금했었는데... 저것 때문에 잠이 안와서 늦은 시간까지 저 풀이에 대한 것만 엄청 찾았네요
정말 고맙습니다♡ 진정 수학 고수 이시네요
감사합니다! ^^