정말 멋잇는 문제 2
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
https://blog.naver.com/swift25/223736035847
-
만약 올해도 수능이 망한다면 바로 입대해서 군수를 하겠습니다 2번의 군수또한...
-
엔믹스레어먹엇다 3
히히
-
에 대해 어떻게 생각하시나요
-
개 웃기네
-
괜히 부정타는거 아닌가 몰라
-
낮잠자는거 좋아 0
자면 안되는 시간에 자는게 체력이 더 빨리 차는거 같음
-
아 진짜 장로팀도 힘들겠다 근데 이거 바론런 하면 순위따기 쉬운거아님? 농심 빨리 바론런 해라
-
신뢰구간 99.9%를 쓰지 않는 이유를 알려주는 짤 9
저런 이유 때문에 보통 신뢰구간은 95%에서 99%를 쓰곤 하는데… 갑자기...
-
ㅠㅠ
-
신발사고싶다 0
ㅠㅠㅠ
-
재수 1
재수해서 어느정도 대학가면 성공일까요 사실 인서울보다 그냥 요새 경북대가고싶은 마음이 들어서요
-
어디까지 갈 수 있었을까요? 이미 포스텍에 납치당하긴 했지만 순수궁금증.. 자전까지 가능했을까요..
-
재수 1
재수해서 어느정도가면 성공한것일까여
-
덕코 기부좀 ㅠㅠㅠㅠㅠㅠㅠㅠㅠㅠㅠ
-
학력평가 시험지 양식은 왜 안바꾸지 약간 촌시러움
-
합격ㅇㅈ 15
이렇게 사반수행…
-
[단독]경찰, '선관위 중국 간첩 99명 체포' 스카이데일리 수사 착수 11
(서울=뉴스1) 유수연 박혜연 기자 = 중앙선거관리위원회(선관위) 청사에서 중국인...
-
저는 중경외시~건동홍 자연계를 목표로 하는 예비고3 정시러입니다. 고2 기준...
-
십만단위는 어떻게 하는겨
-
아 다시 보는데 그냥 개 쳐 웃기네 ㅋㅋㅋㅋㅋㅋㅋㅋ
-
시대 기출 0
이거 수학 공통 시즌2에 들어갈려는데 그때도 줄까요?
-
체력 다망햇네 6
아이고... 힘들다
-
고대 특유의 다같이 으쌰으쌰하고 단합 잘되는 분위기를 좋아해서 고대쓰고싶었는데...
-
말까요?
-
1학년 다니다가 군대가고 작년에 전역해서 바로 수능봄 아직 결과 안나왔으면 일단...
-
개졸리네 2
개돌리네 개졸리네 개졸리네
-
연대식 703.59였는데 털그에서 계속 705점이 연경제 떨어진다고 하고 진학사...
-
본가에 가있으면 꽁돈이너무나가지 않나요ㅠ
-
정확히는 연대 69x / 고대 65x 입결하락으로 인한 내려치기는 커뮤니티에서만...
-
전젱이야~오! 겁쟁이야~오! 너 두고봐~ 그녀가 또울자나
-
안녕하세요! 생1 강사 권희승T입니다. 2025년 첫 게시물로 인사드리게...
-
이거 은행에서 선물 받았는데 집에 캐리어가 너무 많아서 20에 걍 던짐 사갈 사람 쪽지 좀
-
외대 예비 1
외대 예비 10번받았고 작년에 15명 돌음 근데 작년엔 30명 뽑고 이번엔 21명...
-
지금 겨울방학때 수1 수2 어떻게 공부해야할지 좀 자세히 알려주세요ㅠㅠ 아래...
-
인생 개망함 2
운지하고싶네
-
고소미 맛없어서 구체적으로는 못 쓰지만 지금까지의 행실이…. 결론은 눈물 흘리면서...
-
보통 컨설은 맹신하는거 아님 아무리 돈 주고 컨설 한다한들 보통 자기 의견이 맞는...
-
레어ㅓ사가요 2
ㄹㅇㅅㄱㅇ
-
후하게잡았다가 대형과 6칸떨 생기면 미친듯이 욕먹는데 존나짜게잡고 2칸최초합하면 욕은 덜먹긴하네
-
이 문장을 읽고 어떤 생각을 해야될지 (자신이 했던 사고의 보여주며) 그리고 선지...
-
66x 정도 받고 혹여 떨어질까봐 안정과 쓴 애들보다 오히려 65x 64x 같은...
-
에에에
-
연대식 712였는데 일부한의대랑 퍼센트 비슷했음
-
지금 한양대 에리카 배화공 최초합 했고 전남대 화학공학부 예비 좀 앞쪽 번호 받아서...
-
본가에서 사생활 없이 살기 vs 휴학 상태에서 타지 가서 혼자 살기
-
뭔가 돌아가는 꼴이..
-
이거 m1 m2 반대로써서 틀리고 정말 절묘하게도 서울대식 394.5가 390이 돼버린
알았어
이 문제 레전드야 개 쩌는 퀄리티야 멋진 문제야
참고로 1963년도 문제임뇨
우리 엄마도 없던시절이네
??
난 1000만원을 걸지 반례를 들어봐라
??
항상이라는건
임의로 첫 조각을 아무렇게 놔도
두 큰 직사각형으로 나눌 수 있단거임?
임의로 2x1 조각을 아무렇게나 배치해도 나눌 수 잇단거
두 직사각형이라는게
2×1의 테두리를 따라가는 큰 직사각형인거임?
어떻게 2x1을 배치해도 단층선이 하나 이상 나온다는 것임뇨.
내가 이해한게 맞구만
오카이
힌트
귀류법임?
원래 풀이는 귀류법 맞
오케이
이런류 문제 종종 체스판 가지고 풀던데 이것도 그건가요
체스판 가지고 푸는게 먼지 모루겟어요
https://orbi.kr/00067151715/
요런 느낌임 ㅋㅋ 이 문제는 아닌가보네용
컬러링 문제군요, 이 문제는 컬러링 문제는 아닌드읏요
힌트..
귀류법으로 단층선이 없는 배치가 있다 가정하고,
단층선을 없애려면 도미노가 18개보다 많이 필요해서 모순임을 끌어내면댐뇨
오켕이...
선이 없으려면, 1-2, 2-3, ... 5-6 을 잇는 도미노가 모두 어딘가에 존재해야함.(가로, 세로 모두)
세로로 1-2를 점유하는 도미노가 하나 존재하면, 1번행이 5칸 남고, 가로로 누운 도미노로는 이를 채울 수 없으므로 1-2를 점유하는 도미노는 항상 짝으로 존재함.
이러한 사실을 기반해서 같은 논리를 반복하면, 2번 행에서 3칸을 남겼을 때 1-2행을 추가할 순 없으므로 나머지도 짝으로 존재함. 즉, 세로로 배치된 도미노가 10개 이상 있어야 가로 선을 없앨 수 있음.
또한, 가로세로에 대해 일반성을 잃지 않으므로 가로 세로 각각 10개 이상 있어야 한다는 결론을 얻을 수 있고, 총 칸수가 36이라는 모순에 도달한다.
와 정답 ㅋㅋ 이것도 푸실줄이야
아까 잠깐보고 포기했었는데 다시 좀 삘받았어요 으흐흐
문제가 ㄹㅇ 멋잇음뇨. 63년도 문제고 이게 가지문제 (a)고,
(b)는 8x8일 때도 (a)가 성립하는가? 임뇨
호오.. 러프하게 봤을 땐 필요한 갯수는 일차로 증가하는데 총 칸수는 제곱으로 증가하니까 같은 방식의 증명은 어려울 것 같긴하네요
이사람 신인가
으흐흐
가로세로연구소밖에 몬알아들음