하시발 이걸왜 못알아먹지
∀x(x∈A∪A^c) 이 식은 참인데
"모든 x가 A또는 A^c에 속한다" 라는 의미고
이말은 모든x가 원소로서 존재해야한다는 말입니다
모든x에서 x는 무엇이든지 될수있고
모든것(x)이 우리세계(A)나 다른세계(A^c)에 존재한다
는 말입니다
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
사고 싶은 게 있어요..0
-
제오페룰케면 그래도 괜찮았을텐데
-
수학 공부는 안했어도 과외를 열몇개를 했는데 올해.. 만만한 시험지는 절대 아닌 것...
-
미적컷1000점이라는데 990맞앗는데어카죠… 1938382920수는 절대 안시켜주신다네요…
-
담요단 공부법 4
스타벅스 비치타올을 담요처럼 덮고 공부하기 ...를 하는 중
-
ㅁㅊ 0
수능끝났다고 뇌빼고 폭식했더니 4키로쪘다.ㅋㅋ
-
원딜차이가 좀 큼
-
1컷 89전원 갈리는88 2컷 갈리는 80 동의?
-
찐초면 기대를… 좀 해봐도… 되나…?
-
24수능 최종컷이랑 숫자가 매우 유사함
-
물밖에 없음
-
아아...한화야 돈을 얼마나 쳐바른거야
-
오뎅 먹고 싶다 9
뜨끈한 오뎅 국물 캬
-
생각보다 낮네요.. 뭐지 원래 수의대 서울대 높공보다 덜 나오나요?
-
2년 전 글이긴 한데.. 댓글들 보니깐 수백개가 달렸는데 다 맞는 말이라고...
-
동국대 영화영상학과가 너무 가고싶네요.. 텔그에선 55%로 나오는데 써볼만 할까요
-
오르비와 멀어질 때가 되었다
-
외대 중앙대 인문사회 논술까지 3~4일 정도 남았는데 벼락치기를 하려하는...
-
한화는 야구에도 돈 많이 쓰더니..
-
어디가 어느정도로 빵꾸난 거 봄??
-
공통수학..? 자체도 왤케 낯설고 공수는 그냥 공학수학으로밖에 안 줄여봤는데
-
인생이 허무 1
자살
-
듣기로는 그런다던데 말투때문에
-
가능은 할까요..
-
내 현실을 마주 볼 준비가 되었어
-
수2 기출까진 풀었는데 뭔가 뭔가 개념이 빵꾸난 느낌이라 시발점만큼 두껍진 않아도...
-
비기너스 미적분 지금 들어둘까 고민중 미적분 들어놔아되나
-
라인봐주세요 1
언매: 118/79 미적: 145/100 영어: 2등급 한국사: 4등급 물2:...
-
아 우울하다.. 16
오늘 안 좋은 소식이 2개나..ㅠㅠ
-
26수능 준비하고 아직 수1수2 개념도 안나갔습니다 검정고시생인데 재수까지도...
-
동덕여대 시위단들을 보면 태도가 딱 이거임..
-
수리논술 쓸 대가리가 안돌아간다 그냥 벽돌기부 되버렸네
-
현장 미적 100 말고는 의견을 좀 삼가하는게.. 44
유독 올해 수학은 개씹물수능에 만점자 개많고 최상위권 변별도 안되었을듯 << 이런...
-
연상이어야형아라고부를수있잖아
-
운동완뇨 0
캬 잡생각처리goat 1시간40분정도했네 수학실모하나친느낌
-
기분조아짐
-
그니까 대단하신 여러분 제 이미지 적어주세요
-
강기분 문학 일클래스 독서 1월초까지 완강 후 두달간 마더텅 씹어먹고 새기분,...
-
산 지 몇 주 만에 개봉햇습니다 캬..
-
ㅠ 0
오늘은 마셔도 탠션 안올라가네 낵주3병 하이볼4잔 오줌만마려움ㅋㅋ캨
-
나 적어주면 ㅇㅇ
-
게임도 재미없고 유튜브도 재미없고 친구들은 학교다니느라 바쁘고 애니같은거나 봐볼까요...
-
ㅈㄱㄴ 고2 거 올해까지 수강 가능이라 내년 중에 결제 하려고 하는데 그때가 더 저렴한가요??
-
동아대 의대와 조선대 의대 중 어디가 더 좋은가요? 학교수준, 분위기 등 작은 정보라도 감사드려요.
-
무휴반 힘들까요 16
재수때 독재하면서 시간 널널한거 관리도 잘 못하고 사람 안만나니 힘들어서 나란...
-
저는 스킵충임 ㅇㅇ
-
몇 명은 적을 수 있긴 한데 못 적을 거 같은 사람이 더 많아서 못하겠음.....
-
1.생각보다 30대 이상 응시자들이 많다 즉 뒤늦게 대학교들어간 사람들 꽤 있음...
-
복구 어케함? 난 바보인가봄 ㅜ
틀리셨습니다. 현대 논리학에서 양화사 ∀x 를 포함하는 명제는 반드시 x의 존재성을 보장하지 않습니다. "모든 x에 대해 p이다" 라는 명제는 설령 x가 존재하지 않더라도 참이 될 수 있습니다
모든 x가 U에 속한다면, 모든x가 일단 원소로서 존재해야만 하는것 아닙니까?
아닙니다... 그 가정이 틀렸어요. 모든 x에 대해~ 라고 진술하는 명제는 반드시 x의 존재성을 가정하지 않습니다.
∀x(x∈A∪A^c) 이식은 참이라고 하던데요?
네 맞아요. 하지만 '모든 x'와 같이 양화사 ∀를 포함하는 명제는 x가 실존하지 않아도 참이 될 수 있습니다.
아니 제말을 잘들어봐주세요. "모든x가 U에 속한다" 가 참이라면 모든x가 원소로서 존재한다는 말이잖아요
아뇨.. 더 이상 그만 우기세요. 그 명제는 x의 존재 여부와 무관하게 항상 참인 명제입니다
아니 제말이 왜틀렸죠?
x가 실존하지 않는다는건 애초에 ∀x가 아니란말이잖아요
논리학에서 양화사 '모든' 은 반드시 그 대상이 존재해야만 참이 된다고 보지 않으니까요... 우선 존재해야만 한다<<<<이게 틀린 가정이라는 거에요.
∀x(x∈A∪A^c) 이식이 참이니까 x가 원소로 존재할수 밖에 없다고요
x가 실존하지 않는다는건 애초에 ∀x가 아니란말이잖아요
그게 아니라는겁니다. X의 존재 여부와 무관하게 모든 x라는 표현은 성립할 수 있어요. x가 존재해야만 모든 x라는 표현이 가능하다 보는건 고전 논리학의 관점입니다
x가 없으면 애초에 ∀x가 아닌데요
제말 왜곡하지마세요 모든x가 U에 속하므로 모든x가 원소로서 존재하는겁니다
이 사람 어그로입니다
먹이 주지 마십쇼 선생님
네 그렇게 생각하세요
"x가 없으면 애초에 ∀x가 아닌데요" 이말이 틀렸나요?
어떤원소가 없으면 모든원소라고 할수가 없는데
하.. 왜 그렇게 반응하시죠?
현대 논리학, 특히 20세기 이후의 논리학에서는 '존재'와 '양화'의 개념이 더 명확하게 구분됩니다. 현대 논리학에서의 전칭양화사(∀, "모든 x")는 존재를 직접적으로 가정하지 않습니다. 즉, "모든 x에 대해 P(x)가 참이다"라는 명제가 참이 되려면, 해당 범위 안에서 거짓이 될 수 있는 항목이 없다는 것만을 의미하지, 실제로 그 범위에 속하는 x가 존재해야 한다는 것을 의미하지는 않습니다.
특히 현대 수리논리학에서는 공집합과 같은 개념이 많이 등장하는데, 공집합에 대한 모든 명제는 자동적으로 참으로 간주됩니다. 예를 들어, 공집합에 속하는 모든 x에 대해 P(x)가 참이라는 명제는 공집합 안에 아무 것도 없기 때문에 참으로 간주됩니다. 이처럼 현대 논리학에서는 존재와 무관하게 양화사를 다루는 경향이 더 강합니다.
∀x(x∈A∪A^c) 가 참이니 모든x가 U의 원소라는 말이 그렇게 이해가안됨?
그리고 (모든x에 대해 x가 U에 속한다) 라고할때 어떤x가 없으면 (모든x)라고 할수도 없다고요
위에것도 gpt 답변인데요...
"공집합에 속하는 모든x" 이게 대체 뭔말이죠
잘 읽었습니다. 혹시 '어몽어스가 의심스럽다' 라는 명제도 증명해주실 수 있나요?
하나 더 지적하고 가겠습니다. A라는 집합을 우리 세계에 실존하는 대상이라고 잡았을 때, A^c는 말 그대로 A에 속하지 않는 모든 것이 될 수 있습니다. A^c에 속한다는 것이 반드시 다른 세계에 실존한다는 의미가 될 수 없죠.
A^c에 속한다는 것은 '우리 세계에 실존하는 대상이 아니다' 와 같은 의미가 되고, 여기에는 곧 소설 속 세계와 같이 우리 세계에 속하지만 상상에서만 존재하고 실존하지는 않는 대상들, 우리 세계와 다른 세계에도 없는 대상들, 우리 세계에만 없는 대상들...등등 말 그대로 우리 세계에 실존하지 않는 모든 것들이 들어갈 수 있습니다.
따라서 저 명제가 항상 참이고, 심지어 x가 존재한다 하더라도 그것이 항상 실제로 존재한다로 이어지지는 않습니다....
하........∀x(x∈A∪A^c) 가 참이니 모든x가 U의 원소라는 말이 그렇게 이해가안됨?
그 말은 맞지만 그것이 꼭 x의 존재성으로 이어지지도, 실존성으로 이어지는게 아닙니다.
x가 원소로서 존재한다면 그리고 집합이 세계라면 세계안에x가 있겠죠
전체집합은 말 그대로 '전체'이기에 님 마음대로 전체를 세계로 한정지으시면 안됩니다.
A가 우리세계고 A^c가 다른세계입니다
그런데 A에 속한다고 반드시 우리세계에 실존한다는건 아니잖아요? 해리 포터나 마블 영화 세계관은 우리 세계에 속하는 것이지만 실제로는 가상의 세계관인것처럼
해리포터가 진짜인 세계가 있을겁니다
해리포터가 진짜인 세계가 있을겁니다
넵!
제가 왜이렇게 고집피우고 난리치는지 이해하실거라 믿습니다
x가 존재한다는 가정이 문제인거 아닌가요? 논리학에 대해선 그리 많이 알지 못하지만 작성된 댓글을 보며 든 생각은 타당성과 건전성에 혼란이 있으신것 같은데... 주장하시는 논증은 타당하지만 x가 존재한다는 명제의 참이 보장되지 않으니 건전성에 결핍이 생기지 않나요? 존재하지 않는 x를 존재한다고 하는 명제의 참 거짓이 문제가 된다는것 같습니다
x가 원소로서 존재한다면 그리고 집합이 세계라면 세계안에x가 있겠죠
우리가 세계에서 관측불가한 것이 실존하다고 설정하신거라면 그리고 그것들이 전체집합내에 존재한다고 가정하신거라면 주장하시는 논증은 타당하다고 생각합니다. 다만 그것이 과학적으로 가치가 있는지는 모르겠습니다.
쿠쿠리 그저 신
님
1=2라면, 3=4이다. 참임 거짓임?
참요