2025 9모 수학 손해설 (전과목)
2025 9월 모평 수학 풀이.pdf
[공통]
1~8번 : 그냥저냥 평범한 2, 3점짜리 문제들
9번 : 4점짜리에 단순 계산 문제..?
10번 : 도형 그려놓고 사인법칙 슥삭슥삭 해주면 되는 문제. 그래도 이건 나름 4점짜리다운 문제였다.
11번 : 아무리 그래도 4점짜리인데 너무 기초적인거 물어보는거 아닌가
12번 : 나열할게 많아서 조금 까다로운 문제인 것 같은데 정답률이 꽤 높다. 미적분 선택자 기준으로 정답률 80%나 나올 정도는 아니라고 생각했는데 역시 표본 수준 상승인가
13번 : 13~14번 있는 페이지가 비주얼이 장난 아닌데, 일단 13번은 그래프 그려놓고 보면 y축 대칭이고 적분값 0이어야 되는게 보여서 생긴거에 비해 쉽게 풀 수 있다.
14번 : 본질적으로는 역함수 성질 물어보는 문제였는데, 갑자기 원이 나와서 중상위권 이하의 입장에서는 얼타기 쉬운 문제였을 것 같다.
15번 : 처음 봤을 때 까다로운 적분 퍼즐이라 15번에 있는건가 했는데 풀고 나니까 황당함밖에 안 남았다. 작년 9모 22번과 결이 비슷해보인다.
16~19번 : 3점짜리 문제 모두 평이했다. 19번은 최근에 좀 까다롭게 나오는 경향이 있었지만 이번에는 쉽게 출제되었다.
20번 : 문제 자체는 어렵지 않은데 은근 몇 개 실수로 빼먹기 좋은 문제인 것 같다.
21번 : 문제 풀면서 퀄리티 낮다는 생각은 잘 안 하는 편인데 이 문제는 진짜 별로인 것 같다... 15번은 그래도 수2 개념이라도 많이 쓰였는데 얘는 마지막에 f'(3) 구하는거 빼면 그냥 고1 수학 아닌가. 솔직히 낼 게 없어서 낸 문제인가 하는 생각도 들었음
22번 : a1부터 a5까지만 고려하면 되는데도 순방향이나 역방향 둘 중 하나만 사용해서 풀려고 하면 생각보다 경우의 수가 많이 나와서 복잡하고 실수 가능성도 높다. 순방향이랑 역방향을 절충해서 푸는 것이 최적화된 풀이인듯
[확률과 통계]
23~27번 : 어려운 문제가 없다.
28번 : 확통은 역시 케이스 분류가 생명이다. f(4)의 값으로 케이스 분류 해놓으면 그 안에서 f(1), f(2)도 케이스 분류해야 돼서 까다로운 문제이긴 하다.
29번 : 3점짜리로 출제해도 될 만큼 쉬운 문제. 특이한 점은 정답이 상당히 크다
30번 : A가 받은 공을 기준으로 케이스 분류 했다. A가 공을 2개 이하로만 받을 수 있어서 케이스 분류할게 많지 않아보이지만, A가 하얀 공을 받았는지 검은 공을 받았는지, A가 같은 색깔의 공만 2개 받았는지 서로 다른 색깔의 공을 하나씩 받았는지 등 디테일하게 고려해야 할 부분이 있다.
[미적분]
23~27번 : 어려운 문제가 없다. 27번 너무 순한맛이라 당황
28번 : 생긴거에 비해선 그렇게 어렵지 않은 것 같다. 메인은 그래프를 그려서 역함수를 적분할 수 있는가 물어보는 것 같고, 답을 구하는 과정에서 치환적분과 부분적분 개념도 모두 사용하게 된다. 다양한 적분 개념을 물어본다는 점에서 좋은 문제인듯.
29번 : 부분분수 분해를 할 줄 아는가? a(n) = S(n) - S(n-1)이라는 것을 아는가? 크게는 이 두 가지를 물어보는 문제인 것 같다. 말 그대로 이 두 가지만 알면 쉽게 풀 수 있는 문제
30번 : f(x)를 부정적분해서 F(x)를 구하면 되는데, 이 때 생기는 적분상수를 조정해주는게 키 포인트다. 이 과정에서 케이스 분류할게 은근 있고, 그래프 개형 따져줘야 하는 부분도 있어서 꽤 어려운 문제라고 할 수 있다.
[기하]
23~26번 : 어려운 문제가 없다.
27번 : 얘도 그냥 현장이었으면 슥삭슥삭 풀었을 것 같은데 해설로 쓰려니까 어렵다.. 이건 공간도형 특인듯
28번 : 뭔가 서로 수직인 두 원이 만나는 두 점이 N1, N2여서 cos(N1ON2) = 3/5이라는게 뭔 느낌인지는 알겠는데 막상 그리기 힘들어서 좀 버벅댔다. 그림에 표시한 글씨들도 좀 뭉개진 것 같은데 못 알아보겠으면 물어보세요...
29번 : 음 쉽다 쉬워! 미확기 모두 29번은 쉽게 나온듯
30번 : 벡터 분리로 풀려다가 케이스가 9가지나 나와서 포기하고... PQ의 자취를 그려주는게 키포인트인 문제인 것 같다. OE는 사실상 크기, 방향이 모두 정해져 있는 벡터라서 PQ 자취만 정확히 파악하면 된다. 한 삼각형을 기준으로 잡고 그 삼각형의 변을 따라 다른 삼각형을 움직여주면 자취를 얻을 수 있다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
진짜 고능하네.....
-
시험지 꺼내거나 파본검사할 때 눈풀하면 부정행위인가요
-
현실적으로 1
화미생지 기준으로 96 96 2 89 89 면 어디 적정라인임? 이과기준으로
-
30만원 그대로 깨지겠네 제발 내일 학교에서 나의찾기 신호 떠라
-
탐이나요
-
1. 아잉은 무조건 중급이나 고급으로 들어라. 초급반에 간다는 것은 고려대생으로써의...
-
그 때가 재밌었는데.. 오랜만에 우연히 차영진t 해설강의 듣는데 다시 공부하고...
-
보통 그냥 감이죠?
-
ㅅㅂ ..
-
아 슈발 에어팟 2
잃어버렸네 ㅈ같다 진짜
-
크크루삥뽕
-
시간 ㅈㄴ빠르네
-
다 끝냈는데 혹시 짧게 끝낼수 있는 언매 문제지 있으면 추천해주시겠어요??
-
이상하게 취향은 아니네
-
...
-
이거 이기면 뭐 주나? 노벨상? 주제궁금하면물어보세
-
정답이2222ㄷㄷ
-
나도 질문 받아볼까 29
국어 원툴 24언매 표점 145 백분위 100
-
아직 반팔입어도 되겠군
-
살인마들은 그냥 유전적버그가 나버린 일종의 오류 생명체 이지 않을까 신기해..
-
ㅇㅇ… 그냥 길이만 긴 일개 고전시가 1인데 사실 문제를 어떻게 내냐에 달린 거지...
-
반 알로는 택도 없네 12
앞으로 잠 안 오면 한 알 그냥 먹어야지....
-
이 정도면 걍 겨울 아님? ㅋㅋㅋㅋㅋ
-
분석할 수 있는 역량은 나름 괜찮은 것 같은데 타임어택에 항상 약한 게 문제네..
-
바로 자야지
-
올해 진짜 왤케 뭔가 애매하지... 이거다 싶은게 진짜 하나도 없네요
-
옛날에 내가 대충 휘갈겨서 막 냈었는데 승인된 레어들 다시 보니까 반가우면서...
-
본인 가끔씩 잠 안오면 유튜브에 박승동 강의 틀어놓고 잘 때 있음. 학교선생님 그...
-
현우진 차영진 호훈도 인정한 Goat.
-
덕코 어케 버는 거더라
-
하긴 해야하니까...
-
191130 정도의 문제는 미적 30에 나올 수 있을까요? 9
그래도 어렵나
-
재수 수능 조지고 논술 다 광탈해서 삼수 확정났을때쯤 인기 많았던 노래라 한동안 이...
-
아무나
-
이거 5개 다틀리면 낮4부터 시작임
-
고3때는 분명 고대 바의공 성대 글바메만 가도 좋겠다 이랬는데 ㅠㅠ
-
웅웅
-
수학황분들 질문 12
이거 답 몇번인가요
-
Oz모가 수능 난이도 정도인가요? 최저때메 1이 필요한데 요새 너무 점수 안나와서...
-
오르비 하다보면 6
몇년째 나는 제자리인 느낌 발전해서 떠날때도 됐는데 말이지
-
원윤태 학생 제발 정신 좀 차리세요
-
끌끌
-
80분 95점 문학-5 독서(34분 30초) 쉬웠음 손가락 걸기 안하고 모든 선지...
-
제법 젠틀해요
-
어땟음 특히 국어
-
솔직히 BIS같은 경제고난도나 물화생과학 재재로 나오면 그냥 나만 어려워서 던지는...
-
안녕하세요 2
안녕하세요
-
마법의소라고동님 0
올해는탐구11을주세요 씨ㅡㅂ랄줄때됐잖아
예상 등급컷은 언제 올라오나요?..ㅜㅜ
제가 생각했던거랑 거의 문항별로 일치하네요 특히 12번 14번 얘들을 가르쳐보니까 이런생각이 들던데