확률 잘하는사람좀... 평가원 문제 오류??
(문제는 2019년도 시행된 9월 모의고사 수학가형 18번임)
18번에서 (가) 확률을 구할 때 9개를 뽑아 순서에 맞게 나열하는 경우의 수 중
빨6 파1 노2를 뽑아 나열한 경우의수를 구하는 것인데 이경우 아무런 조건 없이 주머니에 빨6파3노3 있고
9개 꺼내서 빨6파1노2 뽑는 확률이면
해설지 풀이가 맞겠지만 이 경우 24점 먼저 획득하면 끝난다는 조건이 붙어있는데,
이 조건을 고려하면 전체 경우의 수가 변하지 않음?
(나)에서도 마찬가지로.... 해설지 읽고 해설 강의 아무리 들어봐도 이런관점 언급조차 안하네 내가잘못생각한건가?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
다들 어케 준비하고 계신가여
-
과생활, 동아리, 공부, 과외, 학원, 헬스, 주짓수 등등 폭넓은 질문 환영입니다.
-
댓글달아보세요 6
네
-
감사합니다 6
꺄
-
수능 찐막트? 9
응애...
-
경제 선택자가 그렇게 많은지 몰랐지 나는.. 다 여기있었구나
-
윤도영이랑 비교하고 있던데 그정도에요?
-
히히
-
보통 이과가 사탐런하면 뭐뭐 주로 함 25수능은 물1지2 했음
-
이공계 질받 25
서울대 공대에서 썩고 있는 늙은이입니다
-
누가 쓴소리좀 해주오...
-
본인은 장수면서 재수인 나보다도 이번 수능을 못 봤던데 그럼 본인은 좆같이도 노력을 안 한 건가?
-
덕코줍줍하기 6
-
호감오비르언 5
덕코주는오비르언
-
EBS 등급컷은 확정된건가요?? 생윤 30점이라 3등급이 간절한데 그냥 포기하는게...
-
저는 작년에 그 긴 꼬리도 못잡았네요 ㅠㅠ 작년기준 396점인가 그래가지고
-
치대, 약대, 수의대 가능할까요? 가능하다면 어디대학쯤까지 가능할까요?
-
헛소리만 늘어놓고 주무시러 가신거임?
-
둘 다 읽을건데 뭐먼저읽을까요
-
다들 나 빼놓고 로스쿨 날먹하고 있는줄 알았음...
-
수능본개백수도아닌데왜이렇게된것이지..
-
한식으로 미슐랭 3스타가 뛰어난지 일식으로 미슐랭 3스타가 뛰어난지 이야기하는데...
-
중대에서도 로스쿨 젤 많이 보내는 공공인재 다니는데 여기만 봐도 학점 따는거 일단...
-
경북의를 써야 한다는 게 왜 갑자기 지금 생각나는데
-
일년동안 국어 공부라고는 언매 개념 말고는 아무것도 안 했습니다. 그래도 국어는 6...
-
수능수준 미적분으로 커버되는지궁금함
-
이시점에 성적표 인증 없이 XXX 강사님 덕분에 1등급/xx점 받았습니다...
-
메타바꾸는법 9
그런 거 없다
-
군대 질문 2
오늘 신검인데 신검을 받고 입영통지서가 날라오면 그때 군대 연기 가능한가요?
-
저도 그 날먹좀 격하게 하고싶어요
-
무릎꿇고 빔뇨
-
loss쿨이잖아 ㅋㅋㅋㅋㅋ 옯하하하하하
-
ㅈㄱㄴ
-
걍 둘 다 꿈같은거임
-
근데 저분은 1
로스쿨, 의대 둘 다 쟁취하지 못 하셨는데 왜 화가 나신 것...?
-
이미 사고회로가 수능에 박혀있으면 수능절대주의적인 사고로 다 바라볼 수 밖에 없음...
-
시이이발 0
나도 메타에서일하고싶다
-
뭐지 이런 메타는 처음 보는 거 같은데
-
무한n수박고 의대갈필요가…
-
6모 44424 9모 442?? 정도 였는데 이렇게 나옴 갠적으로 외대글로벌 아주대...
-
그러면서 본인은 한의대 알아보고 있고 로스쿨 안가고 장수하고 있는 이유 좀
-
7월쯤에 설경설로 주작글이었나 올라온 거 생각나네요 뭐 리트가 몇 점이고 어쩌고...
-
코딩 아예 안해본 사람 기준으로 말씀드립니다....
-
화학 44 1
** 이거 백분위 70대로 내려가는 가능세계 있음? 지금 82로 잡히는데 좃같네 진짜 ㅋㅋㅋ
-
진짜 몰라서 물어보는데 설경이 의치한약수 한테 다 밀리나요? 진짜 설경 이렇게 낮았어요..? ㅠㅠ
-
공대 및 자연대를 지망하는 코딩 꼬꼬마들을 위한 팁 10
바로 위키독스의 '점프 투 파이썬' 입니다...
확률이라는 건 전체 경우의 수 중 우리가 원하는 경우의 수를 찾는 건데, 설령 빨5파3노1 뽑아서 B가 24점을 먼저 획득하는 경우가 전체 경우의 수에 포함되어 있다고 하더라도 그게 배제되어야할 이유는 없죠. 원하는 경우의수는 분자에 해당하는거니까
애초에 B가 먼저 24점을 획득하는 경우를 배제하고 확률을 구하는건 조건부 확률 아닌가요?
그런데 빨5파3노1의 경우에서 파파파노가 먼저 나열되는 경우는 9개까지 안가고 8개 시점에서 사건이 멈추기 때문에 그 이후를 가정해서 전체 경우의수에 넣어야되는건가요? 아니면 빨3파3노3의 경우는 파파파노노노 나열하면 6개까지 가고 멈출수있는데 그 이후도 가정해서 전체경우의수에 넣는건가요?? 이해가 안됩니다.
전체 경우의 수는 순서를 고려하지 않은 모든 경우의 수를 의미하기 때문에 그런 순서 이해 관계를 개입시키지 않아도 됩니다. 분자에는 말씀주신 빨5,파3,노1가 조건을 만족시키지 않기때문에 적힐 필요가 없고요. 가령 빨간색,파란색,노란색 공을 각각 6개 1개 2개를 뽑는 상황이라면 순서에 관계없이 해당 개수만큼 각 공을 뽑아주면 되기때문에 분모는 전체 12개 중 9개의 공을 뽑은 조합의 수가 적히는것이고, 이때 말씀주신 빨5,파3,노1 개수만큼 뽑는 경우 또한 포함됩니다. 분자는 그저 각각의 색상 중 조건을 만족시키는 공을 뽑는 개수를 조합을 이용해 적어준 것이고요.만약 문제에서 구하는 경우의 수가 말씀주신 것처럼 n번째까지 결정된 이후,n+1번째 순서의 사건에 따라 달라지는 경우 분자에 해당 조취를 취해주시면 됩니다.