문제 하나를 갖고 맛있게 먹어보자 (ft. 다항식의 연산)
2023학년도 고1 6월 모의고사 2번입니다.
정답은 다음과 같습니다.
문제 상황을 조금 바꾸어 봅시다.
풀이는 다음과 같습니다.
참고로 3.5 같은 것을 분수로 바꿀 때 제 사고 과정은 다음과 같습니다.
혹은 3.5가 3과 4 사이에 있는 수이고 분수로 표현했을 때 분모가 2일 것임을
바탕으로 6/2와 8/2 사이에 있는 7/2가 3.5일 것이라는 사고 과정도
좋다고 생각합니다.
보통 우리가 정리가 잘 된 것, 예쁜 것을 좋아하지만
때로는 날 것 그대로를 익히는 것이 더 자연스러울 수 있지 않을까 하는 생각입니다.
문제 상황을 조금 바꾸어봅시다.
풀이는 다음과 같습니다.
문제 상황을 조금 바꾸어 봅시다.
풀이는 다음과 같습니다.
저는 머리가 좋지 않아 곱셈공식 못 외우겠어서
다항식의 곱셈 할 때 항상 분배법칙에 따라 전개합니다.
다른 풀이는 다음과 같겠습니다.
다른 풀이는 다음과 같겠습니다.
이외에도 다양한 사고 방식이 존재할 수 있겠습니다.
저는 두 번째 풀이로 풀었고 첫 번째 풀이도 직관적이고 좋다고 생각합니다.
문제 상황을 조금 바꾸어 봅시다.
풀이는 다음과 같습니다.
이렇게 다항식의 덧셈을 묻는 하나의 문제를 갖고
다항식의 덧셈과 뺄셈을 잘 이해했는지 확인할 수 있는 문제와
치환을 이해하고 있는지, 함수와 그래프를 이해하고 있는지, 좌표 평면을 이해하고 있는지,
이차함수의 그래프를 그릴 수 있는지
다항식의 곱셈을 잘 이해했는지, 복잡한 다항식의 전개를 할 수 있는지
다항식의 나눗셈을 잘 이해했는지를 확인할 수 있는 문제까지
확장하여 생각해볼 수 있었습니다.
대학생이 된 지 2년이 더 지나서도 중고등학생 때의 경험을 갖고
이야기를 풀어간다는 것이 때로 아니다 싶을 때도 있습니다.
10대 때 국가 교육과정에 따라 배우는 것이 크게 달라지지 않기에
어쩔 수 없는 것임은 알고 있지만,
저는 시대인재books 이해원 저자님의 [한 권으로 완성하는 수학]을 활용해
수학 공부하는 법을 배운 후 위와 같은 방식으로 문제 하나를 갖고
4~5개 이상의 문제를 만들어가며 (조건 변형, 비스무리, 발상적, ...)
친구들에 비해 적은 돈으로 1년 동안의 수험 생활을 마칠 수 있었습니다.
사람에 따라 스스로에게 효과적인 학습 방법이 다르겠지만
저는 여러 문제를 풀며 개념을 어느 정도 익힌 후부터는
한 문제를 갖고 다양한 생각을 뻗어나가며 배운 것을 점검하고
새로운 무엇인가를 제시해보고자 노력하는 것이 학습에 더 도움이
될 수 있다고 생각하는 편입니다.
2024학년도 수능 22번 문항을 갖고는 어떤 생각을 이어가볼 수 있을까요?
이 문항으로부터 뻗어나올 수 있는 생각에는 어떠한 것들이 있을까요?
지금까지 공부한 내용들을 모두 활용해야 해결할 수 있는 문항이 존재할 수 있고
그것을 내가 만들 수 있다면 어떤 문제를 어떻게 만들어보는 것이 재밌을까요?
오늘 하루도 파이팅입니다!
0 XDK (+1,000)
-
1,000
-
메타 고능하네 2
뭐임뇨
-
레어구매완 0
동대생의 연막작전
-
풀어보든가
-
버거킹 닫은거같은ㄴ데 11
아
-
먼진 몰라도 수1임.미적할수도 잇음
-
배고파졋다 0
밥묵자
-
개정을 ㅈㄴ많이 하는거부터가 약간 작년책으로는 작년수능을 대비할수없었읍니다...
-
오늘 새벽에 써봐야겟다
-
우웅
-
지금 메인간 글들이 뭐 보기 싫다거나 꼽다는건 아닌데 그렇다고 메인가려는 목적이...
-
슬슬 졸리네여 8
오늘 같이 논분들 재밌었고 내일도 재밌게 놉시다 전 잘때까지 폰하다 쓰러질게요
-
궁금합니다
-
ㅇㅇ
-
1. 극단적인 경우 생각해보기 문제에 대해 파악하고 싶을 때 극단적인 경우를 먼저...
-
ㅇㅇ
-
여기 방음 잘 안되는데 방구를 내가 개만이뀜..
-
릴스넘기다보면 09 헬창 인증 막 이런거 뜨는데 말도 안더ㅣ게 몸이 좋길래 댓글창...
-
내일 달아야겟다..
-
밥도 미루고 인증도 미루고 공스타 공개도 미루고 뭐 그냥 다미룸 말투도 ㄹㅇ 비호감 노잼임
-
대중적으로 가장 유명한 퍼즐 중 하나인 루빅스 큐브는 꽤 복잡한 퍼즐이다. 면의...
-
레어 사세요 6
다양한 고양이레어 다양한 국기레어 다양한 서브컬쳐레어 다양한 사치품레어들이 있어요
-
찍기특강 좀 치는데
-
헐
-
ㅂㅂ 6
사요나라
-
나도 몰라 ㄷㄷ....
-
먼가 재미있는 메타가 도는 거 같은데…!!
-
ㅈㄴ까먹어버리네 안까먹는법없나
-
공개저격 한번 갈길게요 15
아까부터 밥 드신다던 한 분 계신데 지금 한 3시간 째 안 먹고 계시는 것 같은데...
-
라인업 빡시네;;
-
풀어본사람있음? 뭔가 아무도 안풀어봤을거같아서 물어볼수가없네
-
선착3명 4000덕
-
슬슬 밥을 먹어볼까 13
난 준비됐어
-
반수하시는 분들 보통 1학기부터 공부 시작하나요? 저는 1학기에는 학교 다니면서...
-
집오니까 갑자기 먹다남긴 새우전이 그립네,,
-
천성 이과가 말아주는 생윤 손풀이 주의) 틀린 문제가 다수 있을 수 있음
-
지듣노 7
-
진짜 모름
-
김동욱 1
자러갈게요...
-
글 ㅈㄴ 맘에 안 든다수2 다시는 안 써..
-
내숯블치킨언제와 2
닭을잡고있나바
-
해보고 싶은거 13
부계 만들어서 셀프 저격 셀프 반박 셀프 사과 해보고 싶네 부계 만든단 뜻이...
-
뭘써볼까요 추천좀
-
선착순 9
축하합니다 당신은 천만덕입니다
-
졸업하면 어디로 빠지나요? 그리고 생명공 괜찮은 학교 어디어디 있나요?
-
07 예비고3이고 1등급 턱걸이로 74분 풀고 국어(화작)86점 맞았는데 앞으로...
-
호감작이 될까요
-
나 유동하고싶은대
-
https://youtu.be/-So5uwZHT6s?si=wa_7N_mfItL1zHF...
2022 개정 교육과정 기준 2028학년도 이후 수능을 준비하실 2008년 이후 출생자 분들께서는 (A+B)^2에서 A와 B를 적당한 정사각행렬로 잡은 후 계산해보시는 것도 도움이 될 수 있을 것입니다! (공통수학1 뒷부분에 행렬의 기본적인 내용이 위치하니)
A를 B+x^2으로 나눈 몫과 나머지를 구하는 과정에서는 나머지 정리를 먼저 적용해보시거나 조립제법으로 접근해보시는 것도 생각을 확장해가는 데에 도움이 될 수 있을 것이라 생각합니다.
맛있게 즐겨주시면 감사드리겠습니다 형님, 새해 복 많이 받으십시오