마지막 칼럼들 : 익명으로 올렸던 칼럼
저쪽 갤러리에 올린 칼럼들을 다 내릴까... 고민하다가, 하나는 안 알리고 싶은 스킬이라 내리고, 나머지는 팩트의 정리라 냅두기로 하고 걍 마지막 칼럼으로 올립니다.
1. 미지수가 적어야 좋을까
선 결론 : 가끔 미지수 1개정도 적는게 훨씬 빠르다.
또는, “어떻게 소거될지 알고 있다면” 그냥 미지수를 쓰는게 더 빠르다.
당연히 모든 문제에 대해, 내분, 가중치내분, 기타 비율 이용 미지수 0개 풀이 다 해보고 내린 결론이다.
일단 미지수가 줄어들수록 “순수 풀이 속도”가 감소하는건 동의한다고 가정하자.
물론 특수용례로 작년 수능 20번같이 내분상황이 오히려 복잡한 경우(뒤집어서 해야하고.. 통분도 해야하고..) 미지수 0개보다 1~2개가 계산마저 더 느리긴 한데, 이런 상황은 일단 제외하자. 애초에 이거 내분 왜함
아무튼 미지수가 줄어들수록 순수 풀이속도가 줄어들텐데, 그러면 줄이는게 좋은가?
아니다. 미지수를 줄인다는 것 자체가 “방정식의 소거“를 머릿속에서 미리 하는것이기 때문에 다소 생각시간이 필요하다.
따라서 미지수를 줄일수록 “생각시간”이 늘어난다.
결론적으로 미지수를 줄이면 총 풀이시간이 늘어날수도 줄어들수도 있다는거고, 그 최저점은 사람마다 다르겠으나 내가 학생들 과외하면서 연구한 결과 보통 미지수 1개로 놓고 풀 때가 최저점이다.
미지수 0개 풀이가 보자마자 보이는 사람들이면 논외다. 사실 나도 어지간하면 미지수 없이 푼다. 근데 이런 사람들은 보통 장수생/컨텐츠 제작자/현역의대생 밖에 없다. 그리고 굳이 이렇게까지 빨리 풀 필요도 없고.
+)여담
본인이 듣는 강사가 미지수를 매우 적게 사용하거나 안 쓴다면, 그 풀이를 최종지향점으로 삼는건 괜찮으나 막판 산수에까지 미지수를 안 쓰는 경우 못 따라하겠다면 그냥 이해만 하고 넘어가도 된다. 당장 따라할 필요갸ㅏ 없다.
애초에 강사의 강의를 들으면서 생각해야할 마음가짐은 “와 개쩐다 다 따라해야지”가 아니라 “얻어갈거 있나 함 보자”가 더 옳다.
2. 미지수 잡는게 더 빠른 문제의 예시들
처음에 b=a정도 구하는건 미지수를 잡았다고 하기도 애매하니 패스.
미지수를 하나도 안 쓰고 푸는게 가능하다. 즉 x에대한 식을 구할필요 없이 단순 비례식으로 풀 수 있음. 힌트는 (나)를 H2B + NaOH용액을 기준으로 묽힌 용액이라고 생각하면 된다.
근데 이 생각이 빠를까 x잡고 산수때리는게 빠를까?
반응전 A와 B의 몰수를 계수 a로 표현, 반응 후 C 몰수를 계수 c로 표현하면서 상댓값 잡고 풀면 더 직관적이고 빠르다. 즉 미지수 2개를 쓴다.
추가적으로 실험 1에 곱하기 2 하면 존나쉽다.
물론 반응전 A와 B 몰수를 x, y 이따구로 잡으면 풀이 터진다.
가중치 내분으로는 미지수 0개
선형성으로 미지수 1개
일반풀이로 미지수 2개
가중치 내분 말고는 풀이속도의 차이가 없다.
선형성과 일반풀이, 솔직히 속도 차이 안난다.
가중치 내분은 이 문제 나오기 전엔 없던 스킬이니깐 엄밀히는 뒷북풀이라 논외이다.
3. 이온표 논쟁 정리하면
비 첨가형 유형에선 이온표가 “일반적인 실력인 경우” 더 빠름
이온표 안 쓰는 풀이에 매우 숙달되면 비 첨가형 유형에서도 이온표보다 빠름
첨가형 유형에선 이온표가 대부분의 경우 느림. 문제 상황에 따라 시간차이가 클수도, 작을수도 있고 이온표 그리는 실력에 따라도 갈림
이온표 자체의 근본적 한계는, 대부분의 경우 문제풀이에 쓸모없는 알짜 이온 개수까지 다 적는거때문에 시간이 끌리는거인데
비 첨가형 유형은 해봤자 용액 3개주는거라 큰 문제가 안되고, 오히려 능지 굴리다가 시간 끌림
첨가형은 용액 4개나 그 이상도 주고, 첨가형 문항의 기본 베이스인 선형성이 잘 보이지 않게 되는 이온표가 손해인거
이온표가 확실히 불리한 평가원 문제는 아래가 있다
나머지 평가원 문제는 대부분 큰 유불리가 없다
물론 애초에 이거 이온표로 해설하는 사람 없을정도로 너무 명백한 예시인데..
2206 중화도 연속성이 명백해서 이온표가 불리한 사례중 하나다.
4. 21학년도 7월 학평 20번(중화)
사실 ㄱ, ㄴ 귀류법 때려도 쉽게 풀리지만 생각을 하면서 해보자
+) 그래프에 보이는 첨점으로 푸는 풀이는 패스한다.
++) 과조건 존나많다.
1. 용액 1은 염기, 용액 2는 산성이다. 1~2 사이에서 넣고 있는 산의 음이온 개수는 증가해야 하고, 넣지 않고 있는 산의 음이온 개수는 일정해야한다. 따라서 용액 2를 2:2로 두면 상댓값이 일치한다. 이걸 걍 개수로 두자.
2. 용액 1과 용액 2의 음이온 수 합이 4로 같다. 하지만, 현재 첨가하는 상황이고, 용액 1~2 사이에서 액성이 바뀌었으므로 “전하량 합”은 증가해야 한다. 따라서, 평균 전하량이 증가했다. 즉, 넣고 있던 산은 2가이다. 따라서 ㄱ은 HA, ㄴ은 H2B이다.
(따라서, 용액 1 1:1:2에서, 비율 2에 해당하는게 A-이다. 실제 시험장이라면 이제 문제에 이온을 표기해야한다)
3. 용액 1의 전하량 합은 5, 용액 2의 전하량 합은 6이다. 양이온은 1가 이온 뿐이므로 전하량은 양이온 개수와 같다.
따라서 용액 1의 모든 이온 개수는 9, 용액 2는 10이다.
이온 수 비 9:10인데 몰농도 비 9:8이므로 부피비는 4:5이다.
따라서 V=20이다. (ㄱ X)
4. 5mL 첨가 지점의 모든 이온 개수는 10이다.
설명 : 단순 첨가 상황이므로, 용액 1과 양/음이온 전하량은 같다(둘 다 중화점 이전이므로). 근데 5mL지점이면 아직 2가가 들어오지 않은 상황이다. 따라서 전체 이온 개수는 전하량이 5이므로, 5*2 = 10이다.
5. 용액 2도 이온 개수가 10이므로 용액 2와 비교하면 기분 좋을 것 같다.
5mL 첨가 지점 부피는 25, 용액2 부피는 50이고 이온 개수가 같으므로 몰 농도 합 비는 2:1이다. 따라서 m=16 (ㄷ O)
6. 부피 비 HA:H2B = 1:2로 넣은게 용액 2인데 A-, B2- 개수가 같다. 따라서 몰 농도비는 부피비의 반대인 2:1. x:y=2:1(ㄴ O)
답 4(ㄴ, ㄷ)
설명을 많이 했는데, 님들이랑 나랑 약속이 안 되어있어서 그럼. 님들이랑 나랑 용어적으로 약속을 했으면 풀이는 짧음
5. 제일 빠른 231120 초반부 풀이 및 잡기술
대충 개념은 “공통항의 소거”라고 생각해두던 택틱이고
원래 양적관계에서 반응 후 생성물 몰분율 같을때 쓰던 논리인데
여기서 응용해서 부분적으로 잘 적용됨
3:6
6:2
로 맞추면 부피가 같음
이제 두 비례식 빼면, 비례식 왼쪽항은 3, 오른쪽 항은 4인데 이게 각각 부피가 같아. 따라서 이게 그대로 분자량비. 끝.
이유 설명하면
(가) 3:6
(나) 6:2에서
비례식 왼쪽항 최솟값 3, 비례식 오른쪽항 최솟값 2를 뽑아
즉 3:2를 생각해
이건 실린더 (가)이든 (나)이든 부피가 같을거야
(가)와 (나)에서 각각 3:2를 빼주면, (가) 0:4, (나) 3:0이야
근데 (가)와 (나)는 원래 부피가 같았고, 같은걸 빼줬으니 부피가 같아
따라서 부피가 같은데 그 질량비가 3:4이니 이게 분자량비.
이게 기본 원리고, 결국 결론은 “공통항”을 빼도 같다는건데, 이게 사실은 서로 빼주는거랑 동일한 행위라서 맨 처음 보여준 풀이가 나와.
나는 이거 양적관계에선 “닮은 반응”이라고 부르는데 언젠가 올려볼게. 공통항 소거중 한 부류.
+)사실 윗 설명은 양적관계에서 쓰는 택틱을 양론으로 옮긴 형태의 설명이고
일반적으로 내가 양론에서 많이 쓰는 풀이는 아래임. 아래에서 말할 일종의 꼼수?를 알아두면 좋아. 분자 이름이 너무 기니깐 왼쪽놈 A, 오른쪽 B라 하면,
(가) = A 3g + B 6g
(나) = A 6g + B 2g
으로 그냥 써. 상황이 그러니까.
(가)와 (나)의 부피가 같으니, 부피로 식을 세울거고, 이제 식에다가 이런 의미를 부여해.
A 3g + B 6g -> A 3g의 부피 + B 6g의 부피 (이지만 굳이 표기를 하진 않고 머리속으로 생각)
그대로 식을 전개해
A 3g + B 6g = A 6g + B 2g
A 3g = B 4g
아까 의미부여한걸 생각하면, A 3g 부피 = B 4g 부피.
따라서 분자량비 3:4가 나와.
이거 많이 쓸 수 있을거야.
++) 이 문항 역수이중내분의 경우, 솔직히 “좋은” 풀이는 아니라고 생각함. “평범한” 풀이 정도에 들어가는듯. 내분을 잘하고, 빨리 한다면 이 문제 정석풀이랑 속도가 비슷할수가 있을 것 같음. 이유를 좀 말해보자면...
일단 이 문제만 놓고보면 역수내분은 내가 한 풀이보다도 느리고, 질량을 똑같이 잡고 연립하는 풀이보다도 느림.
저런 형태로 역수내분이 가능한데 숫자가 내분하기 매우 편하고, 되려 부피를 똑같이 맞춰서 풀기 어려웠다면 역수내분이 더 좋을수도 있으니, 단일 케이스만 놓고 주장하지 말라고 할 수도 있음.
근데 역수이중내분이 다른 풀이보다 더 우위라면 일반 대수풀이로는 식이 씹창이나는 상황이라 평가원은 절대 못냄... 평가원은 문제를 출제할때 내분으로 풀라고 상정하고 내는게 아님. 일반 풀이도 충분히 고려함.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
ㅇㅂㄱ 0
10분늦었어요
-
딱히 노출있는 의상 아니어도 일단 가슴부터 시선이 가던데.. 그렇다고 그 사람으로...
-
애초에 공대생이나 의대생이 다른데에 신경을 많이 쓰면 졸업을 못한다고
-
1186381 오르비언성적표 도용해서 올리다가 쪽지보내니까 슬쩍 글삭닉변하고 전부...
-
https://nz.sa/xAPkS
-
방송국 0
반도체공학과 나와서 방송국 들어갈 수 있나요? 갑자기 궁금해짐
-
얼버기 3
진짜 갓생 사는 듯
-
점공 좀 해주세요 다같이 하면 상부상조잖아요
-
얘들아 2
자이스토리 기하책 22000인데 17100에 샀거덩 다음날 수2책 살ㄹㅕ고 같은곳...
-
개병슨들아
-
25수능 보면서 고사장이 그리 시끄러울 수 있구나 첨 앎 1
24수능때는 국어 끝나고 세명 탈주 수학 끝나고 정적 영어 끝나고도 아무말도 없어서...
-
예비뜰까봐 쫄리는데 제발 오늘 발표하고 최초합이었으면..
-
그럼내가 오전1시에잠들어서 오전3시에일어났다고? 수면이점점이상해진다
-
하
-
시립대 조기발표각임
-
일단 군대부터 다녀와야지 에휴이
-
소곱창먹고싶다 3
배고파 소곱창은 너무 비싸
-
타지에서 해서 6시에 출발해여 되눈데 클랏다 ㅋㅋㅋㅋ
-
가형임에도 만표가 154,153 ㄷㄷㄷ 1컷 81,79 통합수능이었으면 1컷 70밑에 나왔을지도
-
새벽피방후 1
새벽 헬스장 후 귀가 다들 잘자요
-
최저러라 표점 필요없음 사탐은 안정1 필요함 현역 시절 생윤 공부가 너무 힘들었음 정법 좋아함
-
보고서 써야지 0
삘와따
-
제발요...
-
https://nz.sa/xAPkS
-
개심심해서 최수준 생2 현강들으러감
-
이투스가 탐구황이엇던 시절... 이투스는 2년연속 아이돌 등을 불러 콘서트를 했엇다...
-
이러면 이제 나처럼 살엄청찌는거임 태양질량의0.66배까지늘어나고 핵융합이시작됨
-
미미미누 존나 자주볼수있음 실물 ㄹㅇ 잘생김
-
외계인피자 프레드피자 뉴욕어쩌고피자 스폰티니피자 더피자스탠드 기타등등피자 맨날 피자시켜먹어서 살이찜
-
24미적 공1선3 84점 백분위 97줬었음 나도 당연히 1등급이겠지 하며 있었는데...
-
걍 배달을 애용하긴 했음 어글리딜리셔스(미국 뉴올리언스식 양념치킨) 외계인피자...
-
카카오맵에 다 저장할게요
-
독서인강추천제발 1
현역때도 문학은 잘해서 항상 틀려도 1개 이하였는데 비문학이 너무 어려워요...
-
70키로 안 넘는 사람은 이 약 절대!! 먹으면안돼! ㅇㅈㄹ
-
아마 이지영 대기줄인듯 신청대기였나..
-
24국어도 멘탈은 안나갔었는데 24미적은 시간 15분 남었는데...
-
어쩌자고 지금까지 안잔건데ㅔ
-
미래향(직원이랑친해질정도로자주감) 미스꼬레아 김치볶음밥(걍 주말마다감) 버거킹...
-
ㄹㅇ 여기가 회전율도 좋아서 자리도 많이났는디
-
언매 하시던 분들 혹시 작수 화작만 풀어본 분들 계심? 15
시간 얼마나 걸리고 몇개 정도 틀리셨나요
-
10레벨이에요 1
레벨 높으면 좋은거죠?
-
배고프네 2
라면 끓일까
-
진짜 올해 수험장에 아는애들 너무많아서 답맞힌게 한임.. 우리 고사장에도 2명이나...
-
지하철에서 메가 가채점 입력했더니 의문사 백개 (ex. 듣기틀,매체틀,탐구1페이지,연산실수…)
-
너무 서러웠음 객관적인 난이도는 모르겟고 내가안한건맞는데 걍 내가 너무 ㅂㅅ처럼느껴졌은
-
호안정대 레츠고
-
걍 ㄹㅇ 이상하더라 내가 반년간 그렇게 노력했는데 이렇게 수능을 망쳤다고? 부모님이...
-
나를위한 불갈비스페셜을만들어줘
Dead God.
수고하셨습니다!
내신 때문에 아직 1단원까지밖에 안했는데… 밀도가 9:8이니까 총질량을 처음부터 9:8로 맞춰서 공통항 빼고 바로 분자량 구하는 게 엄청 신박하네요
저는 (질량비 합)/(질량비/분자량 합)을 밀도비로 해서 풀었는데 이 과정 계산 속에서도 같은 논리가 나오네요 이 계산 줄이는 게 화학에선 정말 중요한 것 같아요 <—혹시 이게 정석풀이인가요?
역수 내분은 김준쌤 거 찾아서 봤는데 오히려 복잡해서 유명하다던 역수내분이 저한테 안 맞나.. 했는데 이게 유용할 때가 있고 아닐 때가 있군요
아직 4단원 안해서 모르겠지만… 문제풀이 할 때면 쓰신 글 다 봐야겠네요 정말 유용할듯
그게 정석 맞아요