확률 문제 질문드립니다
[1 2 3 4 5 6 '7 7' 8 9 10 ] 이렇게 11장의 카드중에서 3장을 꺼낼 때 가장 큰 수가 7일 확률은?
학교에서 선생님이 내주셨는데
(7C2/11C3)x1/2 이렇게 식 세워 풀어서
7/55 가 나왔는데 어떻게 틀린거고
올바른 풀이가 어떻게 되나요?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
진짜 고능하네.....
-
시험지 꺼내거나 파본검사할 때 눈풀하면 부정행위인가요
-
현실적으로 1
화미생지 기준으로 96 96 2 89 89 면 어디 적정라인임? 이과기준으로
-
30만원 그대로 깨지겠네 제발 내일 학교에서 나의찾기 신호 떠라
-
탐이나요
-
1. 아잉은 무조건 중급이나 고급으로 들어라. 초급반에 간다는 것은 고려대생으로써의...
-
그 때가 재밌었는데.. 오랜만에 우연히 차영진t 해설강의 듣는데 다시 공부하고...
-
보통 그냥 감이죠?
-
ㅅㅂ ..
-
아 슈발 에어팟 2
잃어버렸네 ㅈ같다 진짜
-
크크루삥뽕
-
시간 ㅈㄴ빠르네
-
다 끝냈는데 혹시 짧게 끝낼수 있는 언매 문제지 있으면 추천해주시겠어요??
-
이상하게 취향은 아니네
-
...
-
이거 이기면 뭐 주나? 노벨상? 주제궁금하면물어보세
-
정답이2222ㄷㄷ
-
나도 질문 받아볼까 29
국어 원툴 24언매 표점 145 백분위 100
-
아직 반팔입어도 되겠군
-
살인마들은 그냥 유전적버그가 나버린 일종의 오류 생명체 이지 않을까 신기해..
-
ㅇㅇ… 그냥 길이만 긴 일개 고전시가 1인데 사실 문제를 어떻게 내냐에 달린 거지...
-
반 알로는 택도 없네 12
앞으로 잠 안 오면 한 알 그냥 먹어야지....
-
이 정도면 걍 겨울 아님? ㅋㅋㅋㅋㅋ
-
분석할 수 있는 역량은 나름 괜찮은 것 같은데 타임어택에 항상 약한 게 문제네..
-
바로 자야지
-
올해 진짜 왤케 뭔가 애매하지... 이거다 싶은게 진짜 하나도 없네요
-
옛날에 내가 대충 휘갈겨서 막 냈었는데 승인된 레어들 다시 보니까 반가우면서...
-
본인 가끔씩 잠 안오면 유튜브에 박승동 강의 틀어놓고 잘 때 있음. 학교선생님 그...
-
현우진 차영진 호훈도 인정한 Goat.
-
덕코 어케 버는 거더라
-
하긴 해야하니까...
-
191130 정도의 문제는 미적 30에 나올 수 있을까요? 9
그래도 어렵나
-
재수 수능 조지고 논술 다 광탈해서 삼수 확정났을때쯤 인기 많았던 노래라 한동안 이...
-
아무나
-
이거 5개 다틀리면 낮4부터 시작임
-
고3때는 분명 고대 바의공 성대 글바메만 가도 좋겠다 이랬는데 ㅠㅠ
-
웅웅
-
수학황분들 질문 12
이거 답 몇번인가요
-
Oz모가 수능 난이도 정도인가요? 최저때메 1이 필요한데 요새 너무 점수 안나와서...
-
오르비 하다보면 6
몇년째 나는 제자리인 느낌 발전해서 떠날때도 됐는데 말이지
-
원윤태 학생 제발 정신 좀 차리세요
-
끌끌
-
80분 95점 문학-5 독서(34분 30초) 쉬웠음 손가락 걸기 안하고 모든 선지...
-
제법 젠틀해요
-
어땟음 특히 국어
-
솔직히 BIS같은 경제고난도나 물화생과학 재재로 나오면 그냥 나만 어려워서 던지는...
-
안녕하세요 2
안녕하세요
-
마법의소라고동님 0
올해는탐구11을주세요 씨ㅡㅂ랄줄때됐잖아
14/55 맞나요?? 불안하네요 ㅠㅠ
먼저 8,9,10은 7보다 크니까 제가 원하는 배열에 포함되면 안되겠네요. 가장 큰 수가 7이어야 하니까 1~6은 막들어가도 상관없고, 7이 꼭 포함되어야겠네요.
저는 7 두개를 서로 다른 것이라 인정하고, 네모 세개그려서 풀었어요
ㅁㅁㅁ 여기서 7을 고정으로 선택하고 다같이 나열하면 되니까
7ㅁㅁ, ㅁ7ㅁ, ㅁㅁ7 모두 동일하니까 먼저 3
나머지 두칸에 7개의 숫자를 배열하는 가짓 수 7*6
그리고 7이 두개이니까 바꿔서 다시 2
그래서 2*3*7*6/11*10*9(11P3) 하면 14/55가 나와요
만약 조합을 이용해서 푼다면..
ㅁㅁㅁ 여기서 배열 가능한 가짓수는 11C3이고요
7을 하나 박아놓고 두칸을 채우면 되니까 7C2가 나오고, 7이 두개니까 2*7C2네요
그러면 확률은 2*3*7/3*5*11 똑같이 14/55가 나와요
맞나 모르겠네요 ㅠㅠ
밑에님 댓글보니까 제가 식을 잘못세웠네요.. 2*7C2로 하면 3개중에 7이 두개들어갔을때 7끼리 바꿔도 똑같으니 잘못된거네요 ㅜㅜ 밑에분 풀이가 가장 깔끔한거같고 ㅁ77일때 6C1, ㅁㅁ7일때 ㅁㅁ에 6개중에 2개 선택하니 6C2, 7끼리 바꿀 수 있으니까 2*6C2+6C1, 66이고 전체가 11C3이니 12/55네요 ㅜㅜ 박수칠님 감사합니다!!
네~ ^^
아아 그래서 2*7C2 가 안되는군요! 아랫분 풀이보고 이것처럼 식세워 봤는데 왜 안되나 고민했어요 ㅋㅋ
수학적 확률을 적용하기 위한 전제조건은
(1) 각 근원사건이 동시에 일어날 수 없다.
(2) 각 근원사건이 일어날 가능성은 같아야 한다.
입니다.
여기서 (2)에 부합하려면 7이 써진 2장의 카드가
서로 구별이 안됨에도 불구하고 서로 다른 카드로 취급해야 합니다.
그래서 두 장의 7을 7'과 7"으로 구별하면 근원사건 { 1-2-3 }, {1-2-7'}, {1-2-7"}이
나올 가능성이 같아지면서 수학적 확률을 적용할 수 있게 되죠.
다음으로 가장 큰 수가 7인 경우는
선택된 세 장의 카드에 7’이 포함될 때, 7”이 포함될 때, 7과 7” 모두 포함될 때가 있고
각 경우의 수는 6C2, 6C2, 6C1입니다.
따라서 구하는 확률은
(6C2 + 6C2 + 6C1) / 11C3 = 12/55
가 됩니다.
우와 이렇게나 자세히!
저렇게 나눠야만 하는군요
아직 확률 감각이 많이 부족한가봐요ㅠㅠ
확률에서는 같은 물체도 항상 다르게 봐야 하는 건가요?
우와 이렇게나 자세히!
저렇게 나눠야만 하는군요
아직 확률 감각이 많이 부족한가봐요ㅠㅠ
확률에서는 같은 물체도 항상 다르게 봐야 하는 건가요?
위에 설명했듯이 수학적 확률에서는
각 근원사건이 일어날 가능성이 같아야 하기 때문에
똑같이 생겨서 구별되지 않는 대상들을 서로 다른 대상으로 봐야하는
경우가 대부분입니다.
간단한 예로 상자 안에
1이 적힌 공이 한 개, 2가 적힌 공이 두 개, 3이 적힌 공이 세 개,
4가 적힌 공이 네 개, 5가 적힌 공이 다섯 개 있다고 합시다.
(각 공의 크기와 모양은 완전히 일치)
이 중에서 한 개의 공을 뽑았을 때
그 공에 3이 적혀있을 확률은 얼마일까요?
(1) 같은 번호가 적힌 공을 구별하지 않을 때
다음과 같이 5가지의 근원사건이 나타납니다.
1이 적힌 공이 뽑히는 경우 1가지
2가 적힌 공이 뽑히는 경우 1가지
3이 적힌 공이 뽑히는 경우 1가지
4가 적힌 공이 뽑히는 경우 1가지
5가 적힌 공이 뽑히는 경우 1가지
그래서 3이 적힌 공이 나올 확률은 1/5가 되죠.
하지만 1, 2, 3, 4, 5가 적힌 공의 개수가 달라서 각 공이 뽑힐 가능성이
모두 다르기 때문에 위의 조건 (2)에 어긋나서 틀린 답이 됩니다.
(2) 같은 번호가 적힌 공을 구별할 때
다음과 같이 15가지의 근원사건이 나타납니다.
1이 적힌 공이 뽑히는 경우 1가지
2가 적힌 공이 뽑히는 경우 2가지
3이 적힌 공이 뽑히는 경우 3가지
4가 적힌 공이 뽑히는 경우 4가지
5가 적힌 공이 뽑히는 경우 5가지
그래서 3이 적힌 공이 나올 확률은 3/15=1/5가 됩니다.
이게 답이죠.
1이 적힌 공부터 5가 적힌 공까지 모두 세 개씩 있다면
같은 번호가 적힌 공을 구별할 때와 구별하지 않을 때의 확률이 같겠지만,
대부분의 확률 문제에서는 외관이 똑같이 생겨서 구별할 수 없는 대상이라도
서로 다른 것으로 취급해야 합니다.
전체 11개중 3개 선택 -분모-
7은 무조권 있어야하니깐 미리 하나 뽑아놓고
나머지 두개 1~7까지 중 두개 선택 -분자-
(조합인 이유는 순서는 고려 하지 않아도 되요
예로들면 7.7.3 이나 7.3.7 은 같은 경우죠
그리고 문제를 읽어 보면 우리가 구해야하는게
선택한것중에서 7이 가장크기만 하면되요 목적을 ! 잊지마세요~)
그럼 7C2/11C3 으로 세우신 건가요?
다시 생각해보니깐 제가 판단을 잘못했어요 ..ㅜ죄송해요 윗분 처럼 확률 정의에 따라 7 .7 같게 보면 안되네요 분류로 하는게 정의에 맞고 분류라는 확률의 목적과도 맞네요
2c1•7c2/11c3