[박수칠] 적분 기호 ∫의 이해
미통기 ‘다항함수의 적분법’과 적통 ‘적분법’으로 들어가면 ∫(integral)을 배웁니다.
이미 알고들 있다시피 부정적분과 정적분의 표현에 사용되는 기호이고,
합을 의미하는 Sum의 머릿글자 S를 변형한 것이죠.
∫>
부정적분의 ∫은 도함수의 기호 d/dx와 정반대의 의미를 갖습니다.
dx와 짝을 이뤄서 ∫ dx의 형태로 사용되구요.
함수 F(x)의 도함수가 f(x)이면
라고 쓰며, 이때 f(x)의 임의의 부정적분이 F(x)+C이므로
와 같이 씁니다.
보다시피 부정적분에서 ∫은 합이라는 본래의 뜻과 무관하게 쓰였습니다.
합이라는 의미를 갖는 것은 정적분에서죠.
∫>
정적분의 정의는 함수의 그래프와 x축 사이의 넓이를 구하는 것에서 출발합니다.
함수 y=f(x)가 닫힌 구간 [a, b]에서 연속이고, 이 구간에서 f(x)≥0일 때
함수의 그래프와 x축, x=a, x=b로 둘러싸인 도형의 넓이 S는 다음과 같이
구할 수 있습니다.
(1) x축 위의 구간 [a, b]를 n등분한 다음, 양 끝점과 각 분점의 x좌표를 왼쪽에서부터
차례로 x0(=a), x1, x2, …, xn(=b)이라고 합니다. 다음으로 각 분점을 지나면서 x축에
수직인 직선들로 도형을 자르고 이웃한 두 수선 가운데 오른쪽 수선을 높이로 하는 직사각형을
만듭니다.
(2) 이때 왼쪽에서 k번째 직사각형의 넓이와 모든 직사각형의 넓이 합은 다음과 같이
표현됩니다.
(3) 여기서 n→∞이면 구간 [a, b]에 존재하는 분점이 무수히 많아지기 때문에
각 분점의 x좌표들은 연속적으로 변하는 실수가 된다고 할 수 있습니다.
따라서 각 분점의 x좌표의 일반항 xk는 이 구간에 속하는 임의의 실수 x로 바꿀 수 있죠.
또한 직사각형의 가로 길이 는 0에 한없이 가까워지기 때문에 도함수의 기호와 같이
dx로 바뀝니다. 이때, 각 직사각형의 넓이는 다음과 같이 표현됩니다.
(4) (2)에서는 직사각형의 넓이가 k에 대한 식으로 표현되기 때문에 직사각형들의
넓이 합을 Σ로 표현할 수 있지만, (3)에서는 k가 없어졌기 때문에 Σ로 이들을
더하는 것은 불가능합니다.
따라서 직사각형의 넓이를 더하기 위해 새로운 기호가 필요한데 그것이 바로 ∫입니다.
x좌표가 x인 곳에 생긴 직사각형의 넓이 f(x)dx를 x=a일 때부터 x=b일 때까지 더하는
것은 다음과 같이 표현할 수 있습니다.
이처럼 Σ는 불연속적으로 변하는 직사각형의 넓이 의 합,
∫은 연속적으로 변하는 직사각형의 넓이 f(x)dx의 합을 표현합니다.
(부정적분에 ∫이 쓰인 이유는 정적분의 기본 정리에 따라 정적분의 계산에
부정적분이 필요하기 때문입니다.)
이렇게 이해하면 좌표축과 도형 사이의 넓이, 또는 도형의 부피를
정적분으로 간단하게 표현할 수 있죠.
<두 곡선 사이의 넓이>
두 함수 y=f(x), y=g(x)가 닫힌 구간 [a, b]에서 연속이고, f(x)≥g(x)일 때
두 함수의 그래프와 x축, x=a, x=b로 둘러싸인 도형의 넓이 S는 다음과 같이
구할 수 있습니다.
(1) x축 위의 구간 [a, b]를 n등분하고,
각각의 분점에서 x축에 수직인 방향으로 수선을 그어서 도형을 자릅니다.
그리고 왼쪽에서 k번째 구간 [xk-1, xk]에 직사각형을 그리구요.
이 직사각형의 가로 길이는 , 세로 길이는 f(xk)-g(xk)입니다.
(2) n→∞이면 (1)에서 만든 직사각형의 가로 길이 는 한없이 0에 가까워지면서
dx가 됩니다. 또한 구간의 오른쪽 끝 xk를 x로 바꾸면 직사각형의 높이는
f(x)-g(x)가 됩니다.
(3) 따라서 도형의 넓이 S는 다음과 같이 계산됩니다.
<단면적을 아는 입체도형의 부피>
아래 그림과 같이 점 (x, 0, 0)에서 x축에 수직인 평면으로 잘랐을 때,
단면적이 S(x)인 입체도형이 있다면, 그 부피 V는 다음과 같이 계산할 수 있습니다.
(1) x축 위의 구간 [a, b]를 n등분하고,
각각의 분점에서 x축에 수직인 평면으로 도형을 자릅니다.
그리고 왼쪽에서 k번째 구간 [xk-1, xk]에서 평면 x=xk로 잘린 단면을 밑면으로 하는
기둥을 그리구요. 이 기둥의 높이는 , 단면적은 S(xk)입니다.
(2) n→∞이면 (1)에서 만든 기둥의 높이 는 한없이 0에 가까워지면서
dx가 됩니다. 또한 구간의 오른쪽 끝 xk를 x로 바꾸면 단면적은 S(x)가 됩니다.
(3) 따라서 도형의 부피 V는 다음과 같이 계산됩니다.
그럼 예제 하나 풀어보죠.
2014학년도 수능 B형 13번 문제입니다.
(1) 먼저 부피를 구하려는 회전체를 그림으로 표현하면 다음과 같습니다.
직선 l과 쌍곡선 C의 방정식을 연립해서 풀면 교점의 좌표는 (0, 0), (3, 2)가 되구요.
(2) 회전체의 바깥면은 직선 l이 회전해서 만듭니다.
이 회전체의 부피는 다음과 같이 구할 수 있죠.
(3) 회전체의 안쪽면은 쌍곡선 C가 회전해서 만들고,
부피는 다음과 같습니다.
(4) 따라서 구하는 회전체의 부피는 (2)-(3)으로 구할 수 있죠.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
시켜버림..... 여기 매장에서 먹는게 찐인데 배달은 첨시켜보네
-
꼬리 유추 가능
-
하면 서울대 문과 기준 유리할까요 불리할까요 경제 사문 대비
-
이번엔 尹지지율 46%, 질문방식 바꿔도 지지율 40%대 1
[파이낸셜뉴스] 윤석열 대통령 지지율이 46%를 기록했다는 지지율 조사 결과가...
-
통산 내신 총 평균등급:1.15 내신 상세 1학년 선택과목X 1-1학기 국어 2,...
-
중3때 웩슬러에선 언어이해 118 시공간 132 처리속도 134 나머지 뭐 유동추론...
-
케플러 포함 7종류의 과학탐구 그림을 만들어 보았습니다. 그림에서 "평가원스러움"이...
-
선거보다 어려운내용 없죠? 공부하다가 진짜 헌법재판소보다 몇배는 난해해서 고생 좀...
-
수능 만점 기준
-
얼마전 전역하고 다시 시험준비하려는데 작년까지 대성에 계신거 확인했는데 증발하셨네?...
-
수능날 0
다시 국어 망칠까봐 두렵다..
-
쪽지부탁드립니다
-
문의는 인스타 디엠으로;;;;;;;
-
선생님에게 물어볼 수 있는거?
-
연경제 0
연경제 688도 가능한가요?
-
15시발점 교재랑 워크북있긴함요
-
기분 개같네
-
아침은 2
순대국밥
-
KBS, 尹 대통령 탄핵 찬반 집회 잘못 보도 사과…“관련자 엄정 조처” 2
KBS가 지난 11일 오후 1TV 5시 뉴스에서 윤석열 대통령 탄핵 찬반 집회...
-
서귀포 1989 거제 1930 부산 1576 연표외우듯 외워야하는거임? 설마.. 이...
-
지능이딸려서안되더라 연고라인이 한계인듯
-
재수 1년 지원해주신다 하면 할거임?
-
교과우수라서 내신입력하라는데...
-
오늘은 새르비 안했는데
-
신소재공학과 0
신소재공학과를 들어갈 거 같은데 정보가 좀 없더라구요. 대학 입학하기 전에 뭔가...
-
언매 확통 경제 사문 한문 선택할 것 같슴다!! 확통 하면 서울대 경제 가기...
-
379 미만이네요 이럼 cc빔 엄청셀듯
-
궁금
-
어디라인임? 지거국은 가나?
-
공군에서 군수 시도한 사람 중 95% 이상이 실패하고 2명만 성공했다는 글을...
-
그게 나야 바 둠바 두비두밥~ ^^
-
기하 과외가 아무도 없구만
-
중앙대 합격생을 위한 노크선배 꿀팁 [중앙대25][새내기 시간표, 과목 관련 FAQ] 0
대학커뮤니티 노크에서 선발한 중앙대 선배가 오르비에 있는 예비 중앙대학생, 중앙대...
-
껍질까고 7
먹기
-
명문대는 밥약 9
미슐랭 식당에서 하나여 동생이 신입생 옾챗방에서 선배들이 막 그랬다구 하던데.
-
관리형 독서실은 0
그냥 집 근처 아무곳이나 가면 되겠죠? 리뷰는 괜찮은거 같더라구요
-
ㅠㅠ
-
이재명 "카톡이 가짜뉴스 성역인가…반드시 퇴치할 것" 3
이재명 더불어민주당 대표가 13일 "카톡이 가짜뉴스 성역인가"라며 '카톡 검열'...
-
똥을 먹어야 설사를 먹게해준다는거 같음
-
한국에서 내세울수 있는 가장 강력한 스펙임 비단 취업뿐만아니라..
-
3칸이었는데 예비120언저리 잡히는거 보면 2칸도 붙을법하겠는데
-
이미 최상위권이라 변동성 적은경우 제외하고요
-
지구과학 안 한지 1년이 넘었다보니까 이제 문제 자체는 기억이 어렴풋이 나는데...
-
ㅇㅂㄱ 8
-
꿈이 가득한 옆동네 보다보면 느낌
-
도형 하나 4
답 자연수아님 풀고나서 98수능 자연 24 0409 예체능 10 같이보기 21경찰대20도?
-
빨리 센츄 줘 3
센츄랑 연뱃 달고싶어
-
오르비도 나름 상위권커뮤랍시고 지능 높은애들 모여있는 곳인데도 매년 수능끝나고 고닉...
부정적분에 적분구간이 있을 수는 없어요 수정해주세요
본문에서 어느 곳을 얘기하시는 건가요?
거의 맨 윗부분 말씀하시는거 아니에요? 이미지로는 두번째쯤?..
이런 실수가 있는지 몰랐네요...
수정했구요, 두 분 모두 감사합니다.
ㅎㅎ 좋은글 감사드려요. 비록 전 문과지만ㅜㅜ 끝까지 이해해보려고 노력해봤네요. 감사합니다!^^
앞까지는 문이과 공통입니다. 어려운 부분 있으면 질문 주세요~ ^^
고맙습니다