x-3=5 일때 x값을 구하시오
답) 우선, x의 상세한 값을 가지기 전에, 이 문제의 해가 존재하고, 또 유일하다는 것을 우선 보이도록 합시다.
답이 존재하지도 않는 문제를 푸는 것도 질색이거니와, 열심히 답을 구했는데 그것이 유일한 답이라는 것을 확신할 수 없다면 그것만큼 골치아픈 일도 없죠.
제 전문분야는 이쪽이 아니기도 하고(전 해석학이 싫어요..), 또 워낙 잘 알려진 유명한 정리이니까, 네이버에서 슥슥 긁어오도록 하겠습니다.
이는 가우스가 증명한 ‘대수학의 기본정리’라는 것인데요, 모든 n차 방정식은 n개의 복소 근을 가진다는, 고등학교 수학만 배우셨더라도 어디선가 들어봤을만한 정리입니다.
[정리1.] 모든 다항식(다항함수)은 복소평면에서 적어도 하나의 0점(즉 해)을 갖는다.
,
어떤 차수가 1이상인 다항식 P(z)가 복소평면에서 결코 0이 되지 않는다고 가정을 하자.
그렇다면, 1/P(z)는 모든 복소평면에서 미분가능하다.(holomorphic on entire plane 이라 하는데, 실제로 복소함수가 미분가능하다는 것과 Tayler 급수 전개 가능하다는 것이 동치입니다.) 왜냐하면, 분모가 0이 되지 않기 때문에...
,
그렇다면, z가 무한대로 갈 때 1/P(z) 는 0으로 수렴한다 (이건 증명하지 않겠습니다. 여기서 중요한 것은 z값에 관계없이 수렴한다는 것입니다).
따라서, 어떤 양의 실수 R에 대하여, |z|>R 이기만 하면, |P(z)|<1 을 만족한다.
,
물론, 1/P(z) 는 전구간에서 연속이고, 복소평면 전체에서 유계(bounded)한 미분가능함수이다.
따라서, Liouville(리우빌)의 정리에 의해서, 1/P(z) 은 상수함수가 된다. 그러므로,
P(z) 또한 상수가 되어 주어진 가정에 모순된다.//
,
,
[정리2.] 대수학의 기본정리
정리1에 의하여 차수 n(1보다 크거나 같은 정수)인 다항식에서 하나의 근이 존재함을 보였다. 이 근을 z_1 이라고 하자. 그렇다면, P(z)/(z-z_1) 은 n-1 차 다항식이 될 것이다. 차수(n-1)가 역시 양수라면, 앞의 정리1 을 또 적용할 수 있다.
,
따라서, 정리1을 n번 적용하면 정확히 n개의 근이 복소평면에 존재함을 알 수 있다.
(물론, 중복되는 것을 따로 센다는 가정하에서 그렇습니다.)//
,
,
여기서, 정리1을 증명하는 가장 핵심적인 정리인 Liouville(리우빌)의 정리에 대해서 증명합니다.
,
[증명3.] 리우빌 정리
,
f(z) 가 복소평면 전체에서 미분가능하고, 어떤 적당한 양의 실수 M이 존재하여 부등식 |f(z)| ,
여기서 모든 복소수 z에 대하여 f'(z)=0 임을 보이면 충분하다. 임의의 실수 z_1을 선택하면, Cauchy's inequality(코오시의 부등식)에 의해서,
임의의 실수 r에 대하여 |f'(z_1)| ,
|f'(z_1)|=<0 이 됨을 알 수 있고, 따라서 f'(z_1)=0 이 된다. 여기서 z_1을 임의로 선택했으므로, 모든 z에 대하여 f'(z)=0 이 된다.
,
그러므로, f(z)는 상수가 된다. //
그런데 문제로 주어진 방정식은 1차 방정식이므로, 복소수 상에서 단 1개의 근을 가집니다.
좀더 엄밀하게 하자면 x+c=0꼴이 되어야 합니다만, 위의 방정식이 x+c=0의 꼴로 정리될 수 있다는 것을 보일 예정이니 잠시 넘어가도록 합시다.
본격적인 증명에 앞서,
일단 'group'이라는 개념을 소개하고자 합니다.(한글로는 뭐라고 하는지 잘 모르겠네요..)
어떤 집합 G와, 연산 *가 있을 때,
(G,*)가 abelian(commutative) group이라는 것은, 정의에 의해 다음을 의미합니다.
(1) 어떤 e가 G 안에 존재하여, 임의의 원소 x에 대해 x*e=e*x=x를 만족하고 이때 e(종종 ‘1’, 혹은 ‘0’이라고 표현됩니다.)를 identity라고 한다.
(2) 임의의 원소 x에 대해 y*x = x*y = e를 만족하는 y(종종 x^-1, 혹은 -x라고 표현됩니다)가 존재하고, 이때 y를 x의 inverse라고 한다.
(3) 임의의 x,y,z에 대해 (x*y)*z = x*(y*z)를 만족한다.
(4) 임의의 x,y에 대해 x*y=y*x를 만족한다
처음 본다면 좀 난해해 보일 수 있지만, 하나하나 대입해 보면 우리가 알고 있는 웬만한 연산과 집합은 위의 조건을 만족합니다. group은 수학에서의 가장 기초적인 성질이며, 이정도 조건도 만족시키지 못한다면 수학적으로 다룰 가치(?)가 없다고도 말할 수 있습니다.
복소수 전체의 집합 C는 +라는 연산에 대해 abelian(commutative) group을 이룹니다.
(딱봐도 x는 정수일 것 같은데 굳이 복소수를 대상으로 하는 이유는, 위에서 보인 대수학의 기본정리가, 방정식이 복소수 안에서 해를 가진다고 했기 때문입니다.)
최대한 엄밀하게 증명하고 싶은 마음은 있지만 C가 abelian group을 이룬다는 것은 수학자들이 열심히 밝혀낸 부분이므로 좀 찝찝하더라도 그대로 쓰도록 합시다.
이때 identity는 0이고, inverse는 -x입니다. (저 정의에 대입해보시면, (C,+)가 abelian group이라는 것은 자명하게 느껴질 겁니다. 하지만 수학은 당연하게 느껴지는 사실일수록 증명하기가 어려운 아주 까다로운 특성을 가지고 있죠.)
이제 드디어 문제의 식, x-3 = 5를 대면할 준비가 되었습니다.
이제 양변에 3을 더하여 (x-3)+3=5+3을 만들고..... 여기서 잠깐!
이렇게 마구잡이로 양변에 3을 더하기 전에, 우리는 x-3 = 5와 (x-3)+3=5+3가 정확히 같은 의미라는 것을 확신해야 합니다.
즉, 3을 더한다는 행위가, 3이 더해지는 대상이 되는 수가 다를 경우 3이 더해진 후에도 두 값이 다르고, 같은 수 두 개에 3을 더해야만 3을 더한 후에도 같아진다는 것입니다. 즉, f가 임의의 복소수 x를 x+3으로 보내는 함수라고 했을 때, f가 일대일 함수여야 한다는 것입니다.
만약에 f가 일대일 함수가 아니라고 가정해봅시다. f가 well-defined function이므로, f가 one to one이라는 것은 f의 kernel(=f에 의해 0으로 사상되는 x들의 집합.) 이 trivial하지 않다, 즉 kernel 안에 여러 개의 원소가 들어 있다는 것을 뜻합니다.
(이 부분을 엄밀하게 증명하고 넘어가는 것 역시 제 실력을 벗어납니다 ㅜㅜ
정성적으로 설명드리자면, 일대일 함수가 아니라는 것은 여러개의 원소가 하나의 같은 값으로 뭉친다(?)는 것이니까, 0으로 가는 x값들도 여러개가 있다..라는 겁니다.)
여기서 보조정리 하나를 가져오도록 하겠습니다.
claim) 임의의 group의 임의의 원소 x에 대해, x의 inverse는 유일하다
proof) x의 inverse가 여러 개라고 가정하자, 즉, x*y=y*x=e, x*z=z*x=e
이때 (z*x)*y=z*(x*y)이고, (group의 정의 (3)에 의해) z*x=e, x*y=e이므로
e*y=y=z*e=z가 되어, y와 z는 같다. 즉 inverse는 유일하다.
자 그럼 f의 kernel의 원소, 즉 x+3=0이 되는 서로 다른 원소가 여러개 있다면 어떨까요?
x+3=3+x=0, y+3=3+y=0,(group의 정의 (4)에 의해, 순서를 바꿀 수 있습니다.) 즉 x와 y는 둘다 3의 inverse입니다. 그런데 claim에 의해 3의 inverse는 유일하므로 x와 y는 같아야 합니다.
따라서 모순이 발생하고 ,f는 일대일 함수입니다.
그러므로 x-3 = 5와 (x-3)+3=5+3가 정확히 같은 의미라는 것을 알았습니다.
일단 좌변부터 살펴봅시다. group의 정의 (3)에 의해, (x-3)+3 = x+(-3+3)
-3은 3의 inverse이므로, -3+3=3+(-3)=e(identity)가 됩니다. 이 경우 e=0이죠.
그리고 identity의 성질에 의해 x+(-3+3)=x+e=x가 됩니다.
우변의 경우 상당히 난감합니다. 5+3이라니! 이것을 어떻게 계산해야만 할까요?
다행히도 5와 3은 둘다 자연수이고, 자연수 간의 덧셈은 공리에 의해 비교적 간단히 계산할 수가 있습니다.
공리의 정확한 statement는 제대로 기억하지 못합니다만, 덧셈의 공리에 의해 자연수의 ‘+1’이 정의됩니다. 즉,
1+1=2, 2+1=3, 3+1=4, 4+1=5, 5+1=6, 6+1=7, 7+1=8, ...
이런 식입니다. 이는 무한히 반복되나 8까지만 있어도 충분할 것 같습니다.
따라서 5+3은 다음과 같이 계산할 수 있습니다.
5+3 = 5+(2+1) = 5+((1+1)+1)
여기서 group의 정의 (3)을 이용하여 괄호의 위치를 바꿉니다. 즉,
5+((1+1)+1) = 5+(1+(1+1))=(5+1)+(1+1)=6+(1+1)=(6+1)+1=7+1=8
그러므로 두 결과를 합치면 x=8, x=8입니다!
축하하십시오! 당신은 x-3=5라는 일차 방정식을 풀 수 있게 되었습니다!
길거리에 나가서 사람들에게 외치십시오! “나는 x-3=5의 답을 알고 있다!!”
그리고 이 방법을 응용한다면, 당신은 x+5=10, x-2=8과 같은 많은 난해한 문제들 역시 다룰 수 있게 되었습니다.
자신을 자랑스러워하셔도 좋습니다. 환호하십시오! 당신은 x-3=5를 알고 있습니다!
선생님 앞에 나아가 당당히 말하셔도 좋습니다. "선생님, 전 이 유치원에서 더이상 배울게 없습니다. 초등학교로 가게 해 주십시오!"
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
왜이리 말실수를 하는지
-
챙겨본적이 있어야지..
-
확실히 음주하면 2
정신적 고통이 주는거 같기도함... 아아 키구리씨 이제야 깨달아요...
-
그 논리면 술도 싫어해야하는거 아니냔 소리를 들엇어요 전 그래서 술단배 둘다싫어요
-
굳이 시기는 말하지 않지만 쇼메이커, 에이밍의 PTSD 버전에 새롭게 비디디가 추가됨 아
-
진짜임
-
건동홍이지 않을까 싶음.. 같은과기준으로 (예체능, 특수과 제외) 건동홍이랑...
-
한 방울도 입에 안댐.. 술이랑 담배 둘 중 하나는 끊어야 할 것 같았는데 담배는...
-
옯붕이들 오늘도 수고했엉♡♡(자정 지나서 날짜바뀌었다는말 XX) 4
잘자 내일은 더 열심히 살아야지
-
현타오네
-
내가 연애해보면서 느낀건데 남자한정으로 연애시장에서 좀 유리한듯 남자박살 여자이쁨...
-
수의대를 줘
-
왜 사람들은 담배피고 술먹는걸까 안좋은거 다 알잖아
-
네 인생의 절반을 내게 줘
-
그뭔씹 3
;;
-
없을거알아 그냥 심심해써
-
1. 켈린 재계약한 딮런트 -> 그럼 1년 내내 켈린으로 가던가 이 마저도...
-
정보) 현재 난리 난 N PAY 대란 요약 . jpg 0
https://sbz.kr/zdk1D
-
졸려 0
자기는시러
-
개인적으로는 이렇게 생각함 사실 외모만 있다면 나머지 것들이 그리 중요하지는 않을듯
-
흐으음
-
옛날에 하던 그 맛이 아니네
-
리게티... 17
왜 난 퀀텀컴퓨팅 오우너일까...
-
왜 날먹이라고 생각했을까 나
-
수제 중에 어떤 거
-
강기분하는중인데 뭔가 머릿속에 남는게 없는데 팍팍 우겨넣는 느낌.. 현강...
-
친구랑 존나싸움 12
내 여친한테 고백해서 ㅅㅂㅋㅋ 어이가없노
-
아 배고파 2
방금 밥 먹었는데 또 베고파 라면먹고싶음
-
선착순 1명 8
덕담 해줌
-
담원에 있을때도 누가 한소리 해줬어야 했는데 해줄 사람이 없어 킅에서도 한소리 해줄사람이 없음
-
내가 20년 살면서 느낀 중요도임
-
닉변 뭐하지 11
흠
-
오야스미 1
네루!
-
옯스타 처음인데 1
다들 디엠 서로 자주함??
-
서버 꼬@라지 7
더러워서안한다
-
혻아니 ㅋㅋㅋㅋ 개혻얼탱혻혻이없어서 진짜주작아니고 크롬으로 열었더니 이혻혻혻럼...
-
끊는건 에반가요? 참고로 문과인데 오로지 내신 생명에서의 유전 파트때문에...
-
제발요
-
차단한 회원의 글입니다.
-
갈드컵하실분 4
주제 아무거나 심심하다
-
저 사실 남자좋아해요 겠냐?
-
슬슬 나도 이상해지기는 했음 컨셉 끝내야만 하긴했음
-
비디디 화난거 처음봄 진심 개심각하긴했음 그나마 0.5인분이라도 한 탑을 제외하고는...
-
그때 포기했으면 지금 덜 슬펐을까요.. 겁쟁이로 살기보단 나은 선택이었을까요
-
급성장염으로 잠시 입원.. 지금 깻다;;
-
하루 6천원으로 3끼 가능하겟음
-
모두넣작품이라고붛호
-
안될 걸 알아도 도전하고 시도해야하는거임
...전 수학과 절대 안갈거에요.
ㅠ.ㅠ
우리말인가요?
시ㅣ발 x=8
마지막 ㅋㅋㅋㅋㅋ
선생님, 전 이 유치원에서 더이상 배울게 없습니다. 초등학교로 가게 해 주십시오! ㅋㅋㅋㅋㅋ
5+3이라니! 상당히 난감합니다
개터짐ㅋㅋㅋ ㅋㅋㅋ ㅋㅋㅋ
진짜하나도안웃긴데
group은 한글로는 '군'이라고 한다죠ㅎㅎ
갑자기 푸엥카레(맞나...)의 명언의 생각나네요
'매우 당연한 사실에 대한 매우 당연하지 못한 증명들을 모으면 그것이 바로 수학이다.'
그나저나 어렵네요ㅎㅎ
전반부가 후반부보다 어려운 증명은 처음...보네요
만만해보여서 눌렀는데 복소평면인지 뭔지 못알아 먹겠어서 쭉내린 문레기 1ㅅ.. ㅠ
..... x=8이라거 !
1+1=2 증명도 해주실줄 알았는데 공리라뇨 이해 안간단 말이에요
읽다가 포기 ㅋㅋ 일단 수능부터 보고 다시 읽어봐야겟다
30번 문제는 아무것도 아니었구나..
이런 초고난이도문제를 30번으로나와야할텐데
수능수학은 좋은데, 대학수학은 싫은 이유ㅠㅠ
입실론델타 배우고 싫어졌음.
난 저렇게까지 철저하고 싶지는 않았는데..
항등원 연산규칙 생각하고 들어왔는데 이건 ㄷㄷㄷ...
엄마 ㅠㅠ 이사람 무서워
ㅋㅋ 저도 수학전공인데... 재밌지 않나요?? 고등학생들이 수학이아니라 산수를 배우고 있다는걸 비춰주는 글이죠.. 아마 이 글의 내용을 거들떠보기도 싫을껄요?? 전 항상 자기가 수능 잘한다고 교만한 학생들에게 저런걸 보여줍니다.. 니가 잘하는게 진짜 수학인지 산수인지 한번 보라고.. 수학과에도 수포자가 있는 이유가 다 있죠 ..
수학이 공리, 정의와 같은 전제 덕분에 산다는 학문이지만, 그 속을 들여다 보는건 끝이 없지 않나요?
전제의 전제...의 전제의 전제......
이래서 아직도 1+1=2 이거 하나 제대로 설명하기 힘들다지요, 수학의 원리 책이 엄청나게 방대하면서 복잡한 이유
아, 여기 문제와 상관은 없군요!!
그래도 완전 상관없는건 아니라서...
혹시나 이 글을 보고 혼란을 느낄 수험생들에게 해주고 싶은말은
Learnable Math와 Mathematics는 당연히 차이가 있어야 '옳은' 것이고
지금 내가 배우는 수학이 '틀렸다'라는 생각을 할 필요는 전혀 없으며
고등학교 수학도 충분히 '수학적'으로 서술 되어있으니 이상한 걱정 할 필요가 없다는 것입니다.
실제로 우리나라에서 제 3차교육과정 때 학문적 수학을 도입했다가 큰 문제가 발생했었으며
미국에서도 의욕만빵으로 이러한 학문적 수학을 교과과정에 성급히 넣었다가 실패해서 원래대로 돌아갔었습니다. (초딩들한테 교환법칙,결합법칙 등을 가르치고 있으니 실패할만하죠)
다만, 지금 공부하고 있는 수학(수능 문제 풀기가)이 재밌다고 해서 후에 학문으로써의 수학이 재밌을거란 생각은 조금 고민해봐야하는건 맞습니다
수능도 엄밀하게 논증하면서 공부하는 사람은 재밌을듯..
결론은 x=8 ㅇㅇ
포카칩 님이 이 글을 좋아합니다.
출처좀 써주지..
4번째줄 주목
이거 글 전체 그대로 복사해온거에요 처음부터 끝까지
이런건 쓰는분도 힘들었을텐데 출처좀 써주시지 ;;;
이런거 보면 왜이리 신이나는지 모르겠네요 ㅎㅎ
글 잘 읽고 갑니다 그리고
전 예정대로 수학과 갈게요~ 물론 수능식 수학에 즐거워하고나서 말이죠
위에분도 언급하신것처럼 group은 한국어로 군이라고 해석합니다. 갈루아가 5차방정식의 일반해를 구할때 처음으로 도입시킨 군론에서 나온 말이죠...ㅋ 근데.... 화이트헤드가 1+1의 증명에 대해서 굉장히 심오한 고찰을 하지 않았나요? 어떤것한개 끼리 더하면 두개가 된다는게... 어떤것에 대한 본질을 다시한번 처음부터 생각해야된다나...? ㅋ 저도 수학전공이 아니라 모르겠지만 이부분도 설명좀...
수학전공이 아니신분이 수학을 가르치시니 대단하시다!!