3차함수는 이런걸 알아야 고수!
안녕하세요.
상승효과 이승효입니다.
얼마전 이 문제에 대한 좋은 칼럼이 있어서, 저도 글을 써봅니다.
3차함수의 고수가 되고 싶다면 천천히 끝까지 읽어보시고
선좋아후감상도 감사합니다.
이 문제를 "잘" 풀기 위해
알아야 하는 내용은 아래와 같습니다.
(1은 모든 함수, 2-4는 삼차함수의 성질)
====
1. 구간 함수가 미분가능하면 접한다!
2. 축과 접점을 알면 식을 세울 수 있다!
3. 극점과 극점의 중점은 대칭점이다!
4. 일반형에서 대칭점의 x좌표를 구하자!
====
1. 구간 함수가 미분가능하면 접한다!
구간 함수는 그래프가 끊겨 있다고 생각하지 마세요.
삼차함수와 y=0, y=1 세 개의 그래프가 있다고 생각하고
미분가능하므로 삼차함수가 두 직선과 접한다고 생각하세요.
2. 축과 접점을 알면 식을 세울 수 있다!
삼차함수가 x=0에서 y=1에 접하므로
y=1과 만나는 다른 점의 x좌표를 알파라 하면
이 되겠군요! 따라서 c는 0으로 확정! (오!)
만약 삼차함수의 비율관계를 알고 있다면
x축과의 교점을 바로 찾아내서
y=0과의 접점과 교점을 기준으로
요로케 식을 세운다음에 (0, 1)을 대입해서
a를 구하고, 전개해서 b를 구할수도 있겠죠? (오!)
여기까지의 내용은 일단 무조건 필수!
대부분의 삼차함수는 이것만 알아도
훨씬 쉽게 풀 수 있으니 반드시 알아야 해요.
그렇지만 이 문제는 일반형으로 주어졌으므로
일반형에 대해서 알아봅시다!
3. 극점과 극점의 중점은 대칭점이다!
y=0, y=1에서 접하는 점을 알고 있으니
삼차함수의 극점을 알게 된거죠?
두 극점의 중점은 삼차함수의 대칭정입니다!
4. 일반형에서 대칭점의 x좌표를 구하자!
문제처럼 일반형으로 삼차함수의 식이 주어졌을때,
대칭점의 x좌표는 반드시 위와 같이 결정되요.
일반형 식을 미분한 다음에 완전제곱식으로 바꿔보세요.
미적분 선택자라면 두번 미분해도 되겠죠?
이 식은 외워두어야 해요.
그럼 3번에서 대칭점의 x좌표를 구했으니
이를 이용해서 a,b의 관계를 구하면 삼차함수는
이렇게 미정계수가 a 한개인 식으로 바뀌죠? (오!)
(1, 0)을 아직 이용안했으니 대입해서
a를 구하면 끝이네요!! (오오!)
어떤가요?
왜 주변의 수학고수들이
삼차함수 문제만 나왔다 하면
뚝딱뚝딱 쉽게 푸는지 알겠나요?
그런데 특정한 문제를 풀기 위한
테크닉으로만 외워버리고
다른 문제에 적용을 못시키면 안되죠.
사실 이 정도는 빙산의 일각.
여러분이 모르는 삼차함수의 세계는
아직도 분명히 많을거에요.
이러한 것들을 체계적으로 배워서
수학 고수가 되고 싶다면
여러분도 늦기 전에
상승효과에 올라타세요!
여러분이 기출 분석이 제대로 안되어 있거나
아직 실력이 부족하다면, 혹은 고3이라면
대치옯에서 레퍼런스!
기출을 볼만큼 봤는데도 아직도 실력이 부족하다는 생각이 들었는데
오늘 칼럼을 보고 충격을 받았거나 최상위권 목표라면
강남옯에서 실력지상주의!!
[3-4월 시간표]
<대치오르비>
일요일 2-5시 <레퍼런스-수학2> (3월 7일부터)
화요일 6-9시 <레퍼런스-기하> (3월 2일부터)
위 특강은 영상으로 별도수강 가능해요. 꼭 직접 듣고 차이를 느껴보세요.
예약 : https://forms.gle/mPnn1kZhEUpNbxZd8
<강남(서초)오르비>
토요일 6-10시 (3월 6일부터)
의대합격을 위한 <실력지상주의-수학1+2>
위 특강은 영상으로 별도 수강가능해요. 수학1+2와 병행해도 좋습니다.
실력지상주의는 최상위권을 목표로 하는 학생을 위한 수업입니다.
평가원 킬러와 수리논술 기출 등 최고난도 문제를 다룹니다.
예약 : https://academy.orbi.kr/intro/teacher/196/l
다들 힘내요~~
질문은 댓글로 환영입니다 :-)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
하루에한번씩은 쳐우네 하... 엄마만 아니었어도 자결했을듯 엄마덕에산다
-
한번에 여러개는 못보겠음 피를 계속 보다보면 피로해.. 좀 쉬다 봐야댐
-
수특 수학 2
원래 이렇게 오류가 많아요? 그냥 엔제나 풀래...
-
모잇카이모잇카이코제보-쿠라노코에,
-
담배피지마 9
세금발사대가 돠는거야 나라가 아무라 담뱃값을 올려도 저는 국가의 개에요 선언하는 허접이 돠는거라고
-
수의대 순위 이게맞음? 18
왜 내가 알고있는 순위랑 네이버검색에 뜨는게 이렇게 다르지?ㅜㅜ 걍 작년...
-
실모 많이 풀었어서 행복했음
-
호구잡힌건가 나 나름 시급 6만원짜린데
-
수특 영어 강의 0
내신 때문에 수특 영어 하려고 하는데 혼자하긴 좀 힘들어요. 메가에는 수특 강의...
-
와 존나 춥네 1
귀떨어질뻔
-
사회탐구 중에서 한지,세지,사문중에 고민중인데 각각의 특장점을 잘 몰라서 어느게...
-
덱을 언제 다 외워 차라리 영단어를 외우지
-
ㄱㄱ
-
700A면 9
몇Q임? 3Q야?
-
후우우우웅 8
졸린데 자기는싫어
-
잘자ㅇ ㅛ 자다가 현우진 선생님이 슈발저 ㅁ 이래서 강의 1강 듣고 자ㅇ ㅛ 낼도 파팅
-
맞팔구 2
.
-
주행거리 가능한 배터리나오면 내연차 살 이유 없어지나?
-
기출버리다가 n제,실모만 풀고 막판되서 기출 n제 실모 섞을예정 어차피 수논러라
-
야동 검색하다 운 썰 10
>12살의 나 >포르노를 알게 됨 >어른 포르노는 역겹다고 생각했음 >내 나이...
-
알려주세요
-
ㅇㅏ닌가 탈릅인가
-
112xx 사탐런(생윤 사문) 고전전 교과 이상 목표 대구에 남아서 러셀 가기...
-
수면제 한 입의 여유 15
역시 잘 시간대가 제일 좋다니까
-
얘들아 투표좀 19
너넨 큐브선생이 질문 해설 사진 논술형으로 찍어서 주는게 좋냐(빠름) 아니면...
-
지구는 일케 생겼는데 교과서와 평가원이 평평하다고 구라처서
-
내일부턴 조금 더 간절할수있기를
-
강기원 라이브 1
박종민만 들어봤었는데 강기원이 다들 좋다길래 궁금해서 강기원 현강으로 아니고...
-
낼 해야할거 0
수강신청 접시에 물떠놓고 빌기
-
제가 너기출이라는 책을 본 적이 없어서... 문제 양이나 난이도는 괜찮나요? 일부...
-
안키면 이모티콘도 안보이고 겁나느림 강제휴릅인가
-
국어 인강 선생님을 정해야 해서 평가원 모고를 푼 뒤 해설강의를 비교해볼려...
-
자전가서 원하는 과가 있으면 무조건 할 수 있음? 자전 붙어서 어디어디 가라,...
-
설의붙으면 해야될거 23
1. 오르비에 햄부기뿌리기 저번에 글 썼을때 댓달아준사람들한테 하나씩뿌림 2. 설뱃...
-
서울대도 쌉가능 아님? 킬러 문제도 존나 빨리 풀던데
-
라때는 강지가 국룰 였는데 방금 보고왔는데 조회수 1500만 이던데 이정도면 옆집...
-
700A면 얼마냐...? 산문제 해설하는데 거의 50분 걸림;; 29번이긴 했는데...
-
상하좌우로 오르비가 써있넹 ;;
-
인생은 역시 힘들구나
-
예비 0
지난 3년동안 항상 충원률 120프로 넘던 학과인데 올해 갑자기 충원률이...
-
그런 팀이 2025 담원입니다
-
머하는거지? 로스쿨은 쉽지않을거같은데 다른 진로가 딱히 생각이 안나네요
-
자취방이나 기숙사 지역 (전입 신고) or 본가 지역
-
반수 의지가 조금 줄어들까 공부 방해될거 같으면 그냥 친구 안 사귈려고 하는데
-
참전하겠습니다 ㄱㄱ
-
성적은 수능말아먹어서 44444떴습니다... 러셀 자연관, 강남대성 등등 여러개...
-
연금연구회 "국민연금 건강 너무 나빠…'더 받는' 개혁 안돼" 2
'재정안정' 중시 연구자들 "소득대체율 현행 유지해야" (서울=연합뉴스) 오진송...
푸앙~~~
앗 경찰
굿굿~
선생님 지금 수2 레퍼런스 수강중입니다. 개념이 부족해서 레퍼런스 수강 중인데 4월까지 수2 레퍼런스 수강하고 나서 실력지상주의 수2 수업 수강해도 될까요?
실력지상주의 수업 난이도가 어느정도인지 잘 몰라서 여쭤봅니다.
네~ 그렇게 하면 될것 같네요. (헉 근데 아이민이!)
네 감사합니다.
수강중이면 자세한 학습계획 상담은 카톡으로 가능해요~
선생님 이정도 난이도면 수능수학 몇번 정도인가요? ㅜ영양가 업는 질문 죄송합니다. 풀어서 기분이 좋아서요 ㅜ
잘했네요 ㅎㅎ 쉬운 4점짜리 문제라고 봐야겠죠?