♠주말특집♠ 칸모 애교문제 1
주말이라 킬러문제는 안올릴께요
주말까지 KILL 할 수는 없자나!!?
토욜이라서...새벽에 일어나자마자 여태 풀었던 수학모의고사를 복습하고 있는데.. 여태까지 8시간이나 걸렸음.
딴 과목은 모르겠는데 수학만 하면 이렇게 시간이 어떻게 가는 줄도 모르겠어여 ㅠㅠ
근데 복습 왜 이렇게 짜증나요? ㅠㅠ재미가 없어 ㅠㅠ 걍 모의고사문제 풀고싶어여 ..수학 새로운 문제 막 풀고싶어 ㅠㅠ
풀이법 좀 봐주세여~
우선 출제자 칸타타님의 풀이.
->원판의 넓이는 일정하지만, 원판을 포함하는 평면과 두 평면이 이루는 각도에 따라 그림자의 넓이는 달라진다.
그래서 원판의 법선벡터를 (1,a,b)라 두고 문자끼리의 관계를 찾아나가는 방법.
x=0 위로의 정사영의 넓이를 a,b에 대한 문자식으로 나타내고.
z=0 위로의 정사영의 넓이를 a,b에 대한 문자식으로 나타내어 연립.
이렇게 푸셨는데요..
음.. 저는..
두개의 코사인 값의 비로 1:2일 테니까 방향코사인 잡아준 담에..한개의 코사인 값이 0이 되야 최대가 될테므로..
음 왜냐하면 다른 두개의 코사인 값이 방향코사인에서 손상되면 안되니까...
한개의 코사인을 K라 두면 다른 코사인은 2K 이므로 방향코사인식에 넣어서 코사인 값 구하면 1/루트5가 나와서 풀었어여~
여러분은 어떻게?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
언매 91 확통 97 영1 사문 86 정법 88 이면 생윤.한지로 돌려서 한번 더...
-
수학 실모 0
수학 3위로만 뜨면 되서 지금까지 틀린거 복습&실모2회차 할려 하는데 어떻게...
-
수능날에 최저 2자릿수는...
-
남은 기간동안 기출만 계속 돌릴까요 아님 이해원 시즌3도 같이 풀까용.. 목표는 미적 2컷입니다!!
-
열내렸다 15
아까는 헛것이 보였는데 몸상태의 정상화
-
확실히 6월9월 퀄리티랑 수능 퀄리티 차이도 꽤 나는듯
-
브레턴 두문제 빼고 다 틀림 ㅅㅂㅋㅋㅋㅋㅋㅋㅋ 아 올해초에도 이랬는데 발전한게없네
-
경제글쓰고싶다 3
수많은 경제붕이들과 경제지문 혐오자들을 위한...
-
수1,2를 하려 하는데요 수상하가 제대로 안돼있으면 안된다 들어서 이번에 복습할...
-
제가 머리 쓰면서 문제풀면 많이 더워하는 채질이라… 수능볼때 탁상형 선풍기 반입 가능하나요??
-
=/ 실수전체에서 연속이죠? 좌극한 우극한만 달라도 정의만되어있으면 되는거니
-
띵학모 모려고 듣기 듣는데 첫 20초 기타가 너무 좋아서 못넘어가겠어
-
오카네 카세구 0
와타시와 스탑스탑스탑
-
ㅈㅁㅇ ㄱ ㄴㅇ
-
전 35분 확보해야 다 푸는듯..
-
가즈아아
-
음 혜화내음. 3
성뱃으로.
-
이거리얼임 제앞에 지금 흑인 아조시들잇어요
-
두각 학원 환불 1
올해 25 수능을 치는데 혹시나의 재수 가능성을 염두에 두고 내년 두각 현강을...
-
한번호로 밀면 몇개는 맞겠지.. 문학 화작 정확도는 높은데 시간이 너무 걸려서...
-
진짜 뒤통수 플스윙 마렵게하네
-
신고 먹고 블라될수도 있는데 개빡쳐서 글씀 아니 모의고사 보고나서 성적 분석표...
-
몸살 1
수능 6일전인데 몸살난거같은데 날씨때문에 그런건 같지는 않고 막바지로 다가오니깐...
-
러셀 김강민t 현강 들으신분 어떤가요 혹시
-
아직도 충격적인게 아는 지인 삼수하고 경북대 간호? 거기 갔는데 진짜 무슨 죄...
-
87점 맞았어요. 근데 전 평가원도 ㅅ엄청 쉽게 나온거 아닌이상 많이 어렵든, 조금...
-
확실히 저게 문제였나보네 환율의가치가 좀 비직관적이라고하면 그럴수있긴함 대부분...
-
또 나는 나의 모든 걸 어떻게 할 수가 없었어...
-
물론 수능은 미적칠거임
-
아 진짜 국어 좆됏네 ㅋㅋㅋㅋ 어케 삼수를하는데 현역때보다 퇴화하지
-
사문 개념 9
모든 하위문화는 주류문화에 의해 일탈로 규정될 수 있다 O X
-
정도가 지나쳐져서 이제 머리가 농담으로 절여졌는데 우짬>???
-
윷놀이식 1루 ㄱㅈㅇ
-
수능날엔 내가 무조건 이긴다 이겨낸다
-
같은 김밥집만 일주일에 5번 가는데 이상하게 볼까
-
군.캉스 5
에서 점심을 허.버허.버 먹었어요
-
오후는 수학만 파야겠다..
-
공부잘하는사람들다차단중 13
악의는 없다
-
(본인거아님)
-
박석준T 문학 0
재수학원 같이 다니는 친구가 박석준 좋아하길래 9평 날또수 어떻게 해설하는지 점심에...
-
어디서 주워들은거 가지고 그거 ㅈ밥 아니냐 이러는 사람들이 꽤 많더라구요......
-
수학이 답이 없네
-
대성홈페이지 성적표보기에 11일에 열린다고 뜨는데
-
뜌따뜌우따 12
뜌우따뜌뚜따댜뜌땨
-
11덮 성적표 ㅇㅈ 15
의대.....가야겠지?
-
후반부라 ㅈㄴ파이팅파이팅거리는데 이거 많이 과함?
-
행복하자 13
행복하자. 우리
-
뭉탱이월드 1
뽈롱 아이고난 한판해요
-
11덮 성적 11
수능 목표) 국어 백분위 99 수학 백분위 100 영어 1등급 화2 50점 지2 50점
-
우활하다 우활해 0
우활하다 우활해 너무나 우활해 애친경형 충군제장 내 분으로 여겼더니 우활하다 우활해...
저는 저번에도 후기대로 정면에서본 2차원 그림으로 보고 삼각함수로 풀었어여ㅎ
님 풀이가 갑이에요 ㅋㅋ
제 풀이랑 비교될까바 일부러 님 풀이 안넣었음 ㅋ ㅠ
전 줄리엣님 풀이랑 비슷한거 같아요
저 그림 보고 제일 먼저 생각한건 법선벡터이긴 한데..... 그 다음에 생각난건
xy 평면 정사영 = s1
yz 평면 정사영 = s2
zy 평면 정상영 = s3 라고 하면
s1 제곱 + s2 제곱 + s3 제곱 = 원래넓이 제곱
그래서 y=0 평면 xz평면의 정사영 넓이가 0일때 최대가 되겠구나 하고 풀었네요
위식이 방향코사인과 연관된 식이다보니 줄리엣님 풀이하고 비슷하지 않나 생각이 드네요
오! 저랑 아이디어가 완전 동일한대요? *^^* 조아요~~ ㅎ
설명님이 정사영 넓이가 0일 때 최대가 되겠구나 하신 생각이.
제가 방향코사인에서 아예 한 쪽은 방향성이 없어줘야되니 사라져줘야 겠구나..그렇게 생각했는데!
동일하네요! ㅎ