고3 학교내신문제(수학) 논란이 있습니다. 해결좀해주세요..
문제는 쉬운데 선지가 이상합니다
1번과 4번은 같은것이 아닌가요?
시험칠 때 솔직히 답은 바로 나왔는데 선지가 이상해서 ㅡㅡ
학교 선생님은 항이 다르다고 하시면서(??) 답이 1번이라고 주장하시는데
(사실 저도 첨에 1번 찍었다가 뒤에 4번이 너무 없길래 4번찍은..ㄷㄷ)
왜 1번과 4번이 다른지 이해가 안갑니다. 해결좀 해주세요..
이 문제로 자칫하면 1,2등급이 갈릴 수 있습니다 ㅠㅠㅠㅠ 도와주세요ㅠㅠ
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
대통령 측 “中 드론·기밀 유출…하이브리드 전쟁 중” 1
[앵커] 탄핵 심판에 다뤄질 하이브리드전 다소 생소한 개념이죠. 대통령 측은 우리가...
-
암산테스트 3
ㅅㅂ 70 찍을때까지 한다 오기생기네 ㅗ(여기서 한 30판가량 생략함)
-
제발 누군가 5
나의 글쓰기 기능을 막아줘
-
짭이 더 아이민이 빠름ㅋㅋㅋㅋㅋ
-
하하 귀엽네요 ㅋㅋㅋ
-
된다면 나도 저능부엉이로 닉변할까
-
50gb 1100원 200gb 4400원 둘중에 어떤거 살까요 50gb 쓰다가 부족하면 업글할까요?
-
코카콜라
-
요청 ㄱㄱ
-
드디어 23레벨 14
휴.... 힘들었다
-
헬스장 가려고 했는데 너무 춥네요...내일 가야겠어요 시부레
-
고석용 문제집 6
올해 기출 580제가 작년 440제 작년 기출 추가 한 것인데 작년 문제집과 동일한...
-
찐친 1
서로 패기
-
백석 유우명하지 안나 37
아닌가
-
쓰면 동일닉 ㄱㄴ한거아닌가
-
학교-4년제대학교 위치:대구광역시 특징: 전원 기숙사생활 원칙, 4년동안 매월...
-
짭능부엉이 뭐노 ㅋㅋㅋㅋㅋ
-
에효 0
삶은 여전히 가짜같구나
-
이겼다 6
우리 집안 사촌들 경성 동아 경상국립 등등 본인 “경희”
-
ㅈㄴㅂㅇㅇ 2
이쯤이면 컨셉인지 찐인지 구분이 안가여...
-
부엉이는 하나로 충분하다
-
법대와사시를부활시켜라
-
이화여대 ㅇㅈ 10
내가 이화의 가고 싶어하는 이유 : 어릴때부터 제일 친하고 존경하고 좋아한...
-
이명학 신택스 2회독 정도 한 거 같긴한데 안 한지 오래돼서 다 까먹긴 했어요....
-
ㅇㅈ언제함 2
대기중임.
-
-> 라이거 반대는 타이곤임
-
농어촌 가능해요 그냥 궁금해서 물어봄
-
정품은 이제 더 이상 떨어질 이미지가 없음
-
저는 좌빨극우임 2
?
-
심심해유 0
ㅇㅈ해주세요
-
말로만 인증한거 아니고 찐으로
-
스카이캐슬볼까 0
입시끝났으니까 ㅈㄴ재밌게볼수있을거가튼데 흐흐
-
의문
-
그림그려드립니다 14
그림 그려드립니다 크하하
-
저는 극우좌빨임 4
??
-
정시 연대 디스플레이융합공학과랑 약대 붙었는데 어디갈지 추천좀 해주세요 연대는 계약학과예요
-
투자해볼까 생각중인데 11
경험용으로 100?정도로 근데 그냥 주식하는게 낫겠지? 코인은 너무 도박성의 느낌이 강한듯
-
다이어트 정체기 5
비상비상 몸과 마음은 지쳐가는데 몸무게는 쉴 틈을 안 준다 딱 오키로만 더 빼자
-
사람들 많네 0
영화 탈주 안 봄?
-
아빠는 서울대 엄마는 이댄데 나는 건동홍 턱걸이라 우럿서..
-
오류 정지됨
-
학교-3년제 전문대학,기숙사 생활 원칙 위치-인천광역시 남동구 슬로건-인천으로의...
-
통대지 바베큐 1
해줘 기대중
-
채찍보다 좋음?
-
근데 요즘 아파트는 헬스장 목욕탕 탁구장 스크린골프장 이런거 다있음? 9
어디는 식당도 있던데 신식이면 다 있나 요즘
-
여캐투척 0
-
이새끼왜20만덕이넘어감
같은 항인것 같은데요??
ㅋㅋ 걍 n=1넣고 n=2넣고 n=3넣고 다 넣어보면 다 똑같은데 왜 안되냐고 따져보세요 ㅋㅋ
http://imgur.com/F5PMN
http://www.wolframalpha.com/input/?i=%281%2B%28-1%29%5E%28n%2B1%29%29%2F2
http://www.wolframalpha.com/input/?i=%281%2B%28-1%29%5E%28n%2B1%29%29%2F2+-+%281-%28-1%29%5E%28n%29%29%2F2
일단 기말고사 공부에 집중하고 금욜날 당장 따지러가야겠습니다 감사합니다 ㅠㅠ
문제 잘못 낸 걸로 인정하면 시말서도 써야하고 교장,감한테 눈치도 보이고 해서 쉽게 인정하지 않을 겁니다. 끝까지 밀어붙이세요
제가 아는데 그런 류의 선생 특징이 절대 자기 잘못 인정안합니다.
교장실이나 교무실까지 가서 따져야하는 상황이 올수도 있습니다.
그래야만 인정하는 종자들 입니다.
꼭 승리 하십시오. 건승을 빕니다.
상대를 이기는 좋은 방법 중 하나는, 압도적인 힘으로 밀어붙이는 것입니다. 도저히 반박할 수 없는 논리적인 힘으로 압도해버리시면 됩니다.
대충 이렇게 argue할 수 있겠네요.
수열은 자연수를 정의역으로 갖는 함수로 정의됩니다. (이는 각 수학교과서에서도 확인하실 수 있습니다.) 그리고 함수는 수학적으로
(1) 정의역 X
(2) 공역 Y
(3) 함수 대응규칙 F. 좀 더 구체적이고 형식적으로 설명하자면, X와 Y의 Cartesian product X×Y = {(x, y) | x∈X, y∈Y} 의 특수한 부분집합 F를 가리키며, 이때 F는 다음 두 조건을 만족해야 한다.
(i) 임의의 x∈X 에 대하여, 어떤 y∈Y 가 존재하여, (x, y)∈F 를 만족한다. (즉, 정의역의 모든 원소마다 함수값이 있다.)
(ii) 각각의 x∈X 에 대하여, 만약 (x, y)∈F 이고 (x, z)∈F 이면, y = z 이다. (즉, 각각의 정의역의 원소마다 오직 하나의 함수값만 대응된다.)
이렇게 세 요소의 순서쌍 (X, Y, F)로 정의됩니다. 그리고 이때 (x, y)∈F 라는 관계를 y = F(x) 로 적습니다.
따라서 집합의 상등으로부터 함수의 상등이 자연스럽게 따라나오며, 이 내용은
1. 정의역이 일치하고
2. 공역이 일치하며
3. 정의역의 각 점마다 함수값이 같으면
⇒ 두 함수는 같다.
라는 내용으로 요약할 수 있습니다. 물론 함수의 엄밀한 정의는 모르신다손 쳐도, 위 함수의 상등 내용 자체는 이미 교과과정상 배웠으므로 충분히 근거로 사용할 수 있지요.
이 모든 내용들을 종합하면, 함수의 상등 조건에 의하여 각 n의 값마다 a(n) = b(n)을 만족하는 두 실수열(공역이 실수인 수열) {a(n)}, {b(n)} 은 정의로부터 같은 수열이 됨을 알 수 있습니다.
즉, 수열은 그 수열을 정의하는 식에 의존하는 것이 아니라, 그 식의 각 지점에서의 값에 의존합니다. 따라서
a(n) = {1 - (-1)ⁿ}/2
b(n) = {(-1)ⁿ+1 + 1}/2
c(n) = sin²(πn/2)
등은 모두 동일한 수열입니다.
게다가 n이 정수라는 조건만 추가하면, 물량공급 님의 포스팅에서 확인할 수 있듯이, 정수지수의 정의로부터
{1 - (-1)ⁿ}/2 = {1 + (-1)ⁿ+1}/2
임이 따라나옵니다. 때문에 사실상 주어진 식은 함수가 아닌 식으로써도 동등하다고 말할 수 있습니다. 결론적으로 두 선지는 '근본적으로' 같은 선지입니다.
ㅋㅋㅋㅋ 흔한 선생 관광보내기.txtㅋㅋㅋ 이거 그래도 복붙해서 프린트하고 보여주세요 ㅋㅋ 진짜 쩌시겠네요
으앜ㅋㅋㅋㅋ ㅋㅋㅋㅋ ㅋㅋㅋㅋ
감사합니다!! 이렇게 많은 댓글이 달릴 줄은 몰랐네여.. ㅋㅋ 내일 시험끝나는데 이 자료들 다 정리해서 금욜날 선생님한테 보여줘서 꼭 1등급 받아내고야 말겠습니다ㅋㅋ 감사합니다!!