3차함수 문제 풀어보세요~^^
작년에 직전모의고사에서 통계를 해보니 정답률 약 60%였습니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
얼버기 0
얼버기만
-
시위하는거 너무 시끄럽고 꼴뵈기 싫음
-
ㅋㅋㅋㅋ
-
동덕여대 떡밥 0
이거 수능 끝나고 터졌으면 오르비에서 놀맛 났을텐데 ㅋㅋ 좀만 늦게 터뜨리지..
-
후기 남기러 수능날에 돌아올게요
-
작년 수능 전날에 잠 안와서 3시간인가 4시간 자고 들어갔어서 오늘 걍 안자고 내일...
-
있으면 지금이라도 주무십쇼....
-
진짜 다 왔네요 오늘 하루만 버팁시다!!
-
하려하는데 탐구는 ebsi로 된다봄??
-
수능준비물 3
주변에 평소에도 짐 보따리로 싸 다니는 친구 있는데 수능 준비물로 여분 속옷하고...
-
작년에 이상치 결측치 딱 맞추진 못햇고 수능 2주전에 톡방에서 애들이랑...
-
수능때 물 2
페트병 500ml 가져갈때 라벨 떼고 가져가야하나요? 그리고 시험을 볼때 같이...
-
국수베이스충분함
-
그냥 느낌이 그럼 참고로 작년에 선거 관련 지문 나올거 같다고 느낌왔는데 맞았음...
-
수많은 시험 중에 하나일뿐 능력껏 보는거고 그만큼의 점수가 나오는게 당연 대학 맘에...
-
분명 옛날엔 덕코가 많았던 거 같은데 그땐 어케 많았던 거지..? 오르비를 미친 듯이 했었나..??
-
아니면 오늘 몸 피곤하게 만드려고 전략적으로 안자는거임?
-
하루 벼락치기 해서 1등급 쟁취하는거 보여준다 내가 보여줄게!! 20시간 정도면...
-
갑자기 우기분1에 뚝딱정리 올라온 거 보니까 안 나올 거 같음. 힝.
-
실제 상명대는 모르고 상명여대는 아시는분들 있음... 근데 그분들에겐 상명여대가 인식 좋았던듯
-
쉬운문제 한 10개 빨리풀고 드가기 VS 오답정리한 준킬러 한두개 다시 풀고드가기
-
그냥 오늘은 쉬운실모 84-88 띄우고 끝내야 할 듯 0
그래야 수능장에서 멘탈 괜찮을 듯
-
괜히 뭐 먹엇네 0
배불러서 잠이 안와
-
낼 아무 수험장 들가서 아파트 부를건데 진지하게 민원으로 신고당할 위험 있나요?
-
자라. 2
캬캬.
-
연고서성한 학부수준 수능 경제 풀 때 도움될까요?
-
아까 차였다고 글 썼던 사람인데 여친(이젠 전여친) 친구한테 왜 저러는지 아냐고...
-
지금 시원하게 치고 내일은 참고 수능보러가라 ㅇㅇ 진지하게 하는 조언이다
-
원솔멀텍 다 듣고 난 후에 겨울방학에 기출 많은거 새로 풀건디 머가 좋을까요? 지금...
-
기운 받아가서 니들도 올1등급 받아오길 바란다
-
지금 기도중인거 0
제발 집에서 가까운 고등학교 이사와서 졸업한 곳으로 시험보려가려면 1시간가야됨
-
현재 고2인데 수1, 수2 시발점부터 해야하나요 아니면 바로 뉴런으로 가야하나요?...
-
무당도 아니고 맨날 이 시즌되면 이게 나오네 마네하고 다같이 달달 떨고있는게 너무...
-
더데유데 시즌2 1회 풀어봤는데 점수가 80점 초반나옴.. 하 1등급 안나오게 생겼네
-
솔직히 무지성 암기, 겉으로 드러나는 인간관계때문에 자퇴한것도 맞고 갑자기 씨발...
-
ㅈ됬어요 강철중 설맞이 60점대 처박음;;; 이상하게 쉬운4점 4개나...
-
저녁을 늦게 많이 먹어서인지 계속 꼬르륵 거리고 10시에 누웠다가 11시 30에...
-
책상 모서리에 시계 세워두고 테이프로 고정하세요
-
내동생은 0
*여자임 에타 난리났다고 보여주면서 연대(연세대아님ㅋㅋ)니 뭐니 개역겹다고하던데 멀쩡한애라 다행
-
누나랑 절연할까요? 20
수능 하루남았는데 미국으로 탈조하는 대학 가고 싶은게 꿈이라 말했더니 동양인 자퇴생...
-
어그로ㅈㅅㅠㅠ근데 제발 답좀해주세요 낙은별곡 5월에 출제됐다는데 왜 주요작품에 매번...
-
정병호 2
병호쌤 들으려고 하는데 커리 언제 뜨나여
-
저 배아플까봐 내과 가려고요..
-
조졌는데 어카냐 1
지2 다까먹음
-
맞는 말이긴 하고 실제로도 하려고 했는데 직접 들으니까 세상 쫄리네요 살면서 아빠랑...
-
화작에서 손가락걸기를 못 함 심지어 약간이라도 애매한 선지가 있으면 이거 근거찾고...
-
6평 48 9월 45 나왔었는데 최저걸려있기도 하고 물스퍼거들 때문에 쫄림
-
일케 하는게 맞나요..? 주변에 잘하는 친구는 몇시간이고 고민해서 푼다는데 저는...
-
어케잠자지
3번인가요??
정답입니다.^^
근데 저 궁금한게 저 ㄷ을 구할 때요.. f(x)=x^3-x^2-x+1이 나오는데 이 식에서는 f(1)=0인데 'f(1)<0이면' 될려면 x축을 위로 올리는 건가요?? 그래서 f(x)가 전형적인 삼차함수의 개형인데 근이 2개인 곳에서 x축을 위로 올리면 근이 3개일 수도 1개일 수도 있어서 그런 건가요??
ㄷ선지의 핵심을 잘 짚어내셨네요. 함수 f(x)를 들어 올리면 1,2,3개의 근을 모두 가질수 있기때문에 틀린 것인데
올바른 풀이는
ㄱ.에서 f(1)=f(-1)이죠? 그러고, f '(1)=0입니다. 따라서 f(x)=(x-1)^2(x+1)+a(단, a는 실수)
라고 놓고 상수 a의 값의 변화에 따라서 ㄷ선지를 해석하면 됩니다.
3번인가요?
정답입니다.^^
좋은문제 감사합니다 ^^
33
정답입니다^^
2번인가요? 낚인거 같은데 뭔지 모르겠네요
오답입니다. 함수의 극한에 대해서 좀 더 생각해보시길 바랍니다.^^
으악 잘못썼네요.
1번인가요......?
으악..ㅠㅠ 오답이에요.. ㄱ은 함수의 극한에 관한 선지. ㄴ, ㄷ은 삼차함수에 관한 선지입니다.
힌트를 드리자면, f(1)=f(-1)이고, f '(1)=0 이므로 f(x)=(x-1)^2(x+1)+a (단, a는 상수) 입니다.
3번요 ㅋㅋ f(x) = (x-1)^2(x+1)+f(1) 나오네요 ㅋ
정답입니다. 모범답안입니다.^^
1번?..
아 제 수학 좀 해야겠다.....
오답입니다.^^;;
조건에서 f 프라임 1이 0이라는거 말고 얻어낼 수 있는게 뭔가요 ㅠㅠ?
그게 있어야 풀릴거같은데 ㅠㅠ
ㄱ조건에 모두 답이 있습니다.
힌트를 드리자면, f(1)=f(-1)이고, f '(1)=0 이므로 f(x)=(x-1)^2(x+1)+a (단, a는 상수) 입니다
3번??
정답입니다^^
수리 캐허접인데 풀어보니 3번나오는데, 틀렸죠?
맞았어요 ^^
f(1)=f(-1)이고, f '(1)=0 이므로 f(x)=(x-1)^2(x+1)+a (단, a는 상수)
임을 이용해서 풀었다면 모범답안입니다.
f(x)=(x-1)^2(x+1)+k 로 하긴 했는데
첨에 f(x)=(x-1)(x+1)(x-a)+k 로 놓고 미분후 1대입해서야
a가 1임을 알아내서..
웬만한 분들은 걍 f '(1)=0 보고 바로 식 나오시는듯 하군요 ㅠㅠ
님처럼 푸신분들도 많아요^^;; 앞으로 잘알아두시고 써먹으시면 되는거에요 ㅎㅎ
계산 안하고 바로 생각해내는 사고 과정좀 알려주실수 있나요
ㄷ 풀때 그래프를 그려보면서 뒤늦게 자동으로 알게 되긴 하지만요..
삼차함수에서 도함수의 함수값이 0이라는것은 극솟값 혹은 극댓값을 의미합니다. 그 극값을 k라고 합시다. 그러면, f(1)=k, f(-1)=k 이죠? 즉 f(1)의 값과 f(-1)의 값이 같다는걸 유추할수 있습니다.
그럼 가장 쉬운 예로 k=0이라고 칩시다. 그러면 함수 f(x)에서 f(1)의 값은 x축에 접한 형태가 될것 입니다. 그리고, f(1)은 극값이므로 중근을 갖겠네요. 따라서 f(x)=(x-1)^2(x+1) 라고 유추할수 있습니다.
*) 왜 x축에 접하는 극값이 중근을 갖느냐?
2차 함수 y=(x-1)^2을 생각해보시길 바랍니다.
흠냐 답 ㄱ,ㄴ인가요?
정답입니다.^^
이과 문제로 내기에는 넘 쉬운것 같고 문과 문제로 내면 딱이겠네요~ ㅎㅎ
그래서 작년 SHC모의고사 (나)형에 출제됬던 문제입니다.^^;;
5번
오답입니다.^^
4번? 맞으면 ㄴ이 왜 틀린지 설명좀 해주실수 있을까요?
정답은 ㄱ,ㄴ이구요
모범답안은
f(1)=f(-1)이고, f '(1)=0 이므로 f(x)=(x-1)^2(x+1)+a (단, a는 상수) 입니다.
따라서 ㄴ참, ㄷ은 a값에 따라서 1,2,3개의 실근을 가질수 있으므로 거짓입니다.
5번 맞나요
오답입니다^^;;
ㅠㅠ 힌트까지 주셨는데 개형 못찾았네요.. ㅠㅠ
중근 형태인지 극점 두개 인지 어떻게 판별하죠 ?...
중근형태인지 판별이라..
이런것입니다. 어떤 삼차함수 f(x)가 x=0에서 극솟값 1을 갖는다고 가정합시다.
그러면 함수 f(x)-1은 x=0에서 x축에 닿는 형태가 되겠지요?
이렇게 "닿는 형태"(느슨하게 말하여) 일때 중근이라고 유추할수 있습니다. (수학적으로 엄밀한 것이 아닙니다. 수능에는 이렇게 생각하면 상관없습니다.)
만약 x=0에서 그래프가 x축을 아래에서 위로 혹은 위에서 아래로 뚫고 올라갔다고 칩시다. 그러면 삼차함수 f(x)-1=x(ax^2+bx+c)로 방정식을 쓸수 있습니다. 물론, f(x)-1=x^3일수도 있구요.
*) 여기서 중요한 것. "닿는 형태" -> 2차, 4차 등의 짝수차항 다항식을 포함
ex) f(x)=x^2(x-2)^2
"뚫고 지나가는 형태" -> 1차, 3차 등의 홀수차항 다항식
ex) f(x)=x(x-1)^3
보통 수능은 3차, 심해봤자 4차함수가 나오는 점을 감안하시구... 왜 그런가 궁금하면 직접 그래프를 그려보세요.(네이버에 그래프 그리는 프로그램 쳐서 나오는것 하나 받아서 수식 입력하세요)
극점 2개인 것은 판별한다기 보단, 위에서 방정식을 만들어서 그래프를 그리다보면 자연스럽게 알수 있는 부분입니다. 다로 팁을 드리기가 애매하네요잉...
3번맞나요 ? 귓방망이님 책출간언제하시나용?ㅠ
아직 인쇄중입니다. 생각보다 오래걸리네요ㅠㅠ 기다려주신만큼 좋은 문제질로 보답하겠습니다^^
3번 맞나요??
정답입니다.^^
5번이 아닌가요? 그럼... 3번인가보네요...
모범답안은
f(1)=f(-1)이고, f '(1)=0 이므로 f(x)=(x-1)^2(x+1)+a (단, a는 상수) 입니다.
따라서 ㄴ참, ㄷ은 a값에 따라서 1,2,3개의 실근을 가질수 있으므로 거짓입니다.
ㄷ이 조금만 생각을 더했으면 1,2개 였을수도 있다는 생각을 못했네요 ㅋ 문제질 좋으시네요!
분수식의 극한이 극한값을 가진다는 사실에서 분모가 0으로 수렴하므로 분자도 0으로 수렴합니다.
따라서 ㄱ은 옳은 보기입니다.
또한 로피탈의 정리에 의해 f`(1)=0이고 f(x)는 삼차항의 계수가 1인 삼차함수이므로 보기 ㄱ과 함께 정리하면
f(x)=x^3-x^2-x+c입니다. (단, c는 임의의 상수)
따라서 ㄴ도 옳은 보기입니다.
그리고 f(x)는 x=-1/3일 때 극댓값을 가지므로 f(-1/3)=c+5/27로
f(x)가 세 개의 실근을 가질 조건은 c>-5/27입니다. 따라서 ㄷ은 틀린 보기가 됩니다.
그러므로 정답은 3번 ㄱ,ㄴ이 됩니다.
답은 3번!!
3번인가요??