[박주혁&손우혁 칼럼] 매개변수, 어디까지 공부해봤니?
이번에도 기다리시던 손우혁샘의 칼럼입니다.
이번주제는 "매개변수" 네요^^
다음주에 저는, 문/이과 모두 볼수 있는 칼럼을 준비중입니다~
문과분들은 다음주에 꼭 읽어주세요^^
시작합니다~
------------------------------------------
반갑습니다. 손우혁입니다.
두 번째로 인사 드리는군요.
박주혁 선생님과 제가 모의고사를 제작하기로 마음먹었을 때,
두 가지 특징이 잘 드러난 모의고사가 되었으면 한다는 얘기를 나눈 적이 있습니다.
첫 번째,
단지 킬러문항만 신경쓴 모의고사가 되지말자!
두 번째,
풀고 나면 공부가 된다는 느낌을 받게 하자!
였는데, 4월 Rise 공개이후에 많은 학생들이 비슷한 반응을 보여주어서
힘을 많이 얻었습니다.
얻은 에너지를 2회에도 쏟아 부을 예정이니 많은 기대 부탁 드립니다.
제가 두 번째로 잡은 주제는 6월 평가원의 범위이기도 한 평면곡선의 접선,
그 중에서도 매개변수 곡선에 관한 이야기입니다.
매개변수 곡선을 한 마디로 표현하자면,
프로듀스 101의 장근석이 한 말이 떠오르는 군요.
‘
긁지 않은 복권이다.’
그동안 평가원과 수능 시험의 미적분 고난도 문항에
사용된 함수들을 살펴봅시다.
개정 교육과정 이전에 가장 많이 등장했던 형태가
지수로그 함수와 다항함수의 곱, 그리고 절댓값을 활용한 형태였죠.
그러다가 개정교육과정으로 넘어온 최근 2년간은 기존의 유형에서
탈피하려는 노력이 많이 보였습니다.
크게 세 가지 변화가 눈에 띄었는데
첫 번째, 합성함수의 적극적 사용
두 번째, 수열 접목
세 번째, 미정계수의 범위에 따른 함수 분할
이런 변화로 인해 계산은 더욱 복잡해지고 따져 주어야
할 것들이 많다보니 내공이 부족한 학생들을 손도 못대는
난이도가 되어버린 것이죠.
그렇다면 위의 세 가지 특징이 앞으로도 유지가 될 것인가?
그건 너무 안일한 생각이 아닌가 합니다.
예전과 달리 킬러문항을 적극적으로 대비하면 고득점을 할 수 있는,
요즘 수능 시험은 그 자체가 자충수가 되어 오히려 공부하기 편한,
최소한 무엇을 공부하면 된다는 것이 정해진 시험이 되어버렸죠.
이러한 사실을 평가원에서도 충분히 인지하고 있을 것이기 때문에,
앞으로의 미적분 21, 30 번의 시험 경향은 한마디로
이렇게 요약할 수 있을 것입니다.
" 무엇을 대비하든 대비하지 않은 것이 나올 것이다. "
아주 섬세하게 들여다 보았을 때, 부분적으로 사용된 아이디어는
중복사용이 될 지라도 처음에 문제를 보았을 때의 느낌 만큼은 완전히
새로운 유형의 문제가 나올 가능성이 높습니다.
그런 느낌을 주기 위해선 수식이 정리되는 패턴이나
기하적인 관찰의 포인트에 변화를 주는 것이 아니고
최초에 제시된 함수를 새롭게 출제할 가능성이 높다고 봅니다.
(물론, 개인적인 생각임을 밝힙니다)
자, 이제 매개변수 곡선으로 돌아와 보죠
기하와 벡터 고목에 들어와 있긴 하지만 ‘미적분 II’에
실려 있어도 이상할 것이 없는 단원이기도 하죠.
매개변수 곡선의 정체성은 뭘까요?
양함수로는 쉽게 표현되지 않는 곡선을 표현하는 도구
이것이 매개변수 곡선의 정체성입니다.
느낌이 오나요?
양함수와는 전혀 다른 형태의 곡선을 만들어내는
도구이기 때문에 제가 앞서 말한 새로운 느낌의 문제를
만들기에 아주적합한 재료가 되는 것이죠.
그렇다고 해서 대학교때 배우게 되는 아르키메데스 와선 같은 것이
나올 가능성은 높아 보이지 않구요,
도함수를 통해 분석할 수 있을 정도를 출제할 가능성은
충분히 높아 보입니다.
자, 그럼 매개변수 곡선을 말 그대로 곡선을 그리는 도구로서 인식했을 때,
주의 해야할 점을 정리해봅시다.
우선 두 가지 간단한 예를 통해 살펴볼까요.
그리고, 각각의 도함수는
가 됩니다.
단순히 부호변화만 관찰해 보자면
위쪽 함수는 t가 -1일 때 극대, t가 1일 때 극소가
되는 것처럼 보입니다.
두 번째 함수는 순서대로 t가 0,1,2일 때, 극소, 극대, 극소가
되는 것처럼 보입니다. 물론 t가 1일 때는 미분 불가능한 첨점으로서
극대가 되는 것이구요.
그런데 실제로 두 곡선을 xy평면위에 나타내보면
첫 번째 곡선만 우리가 예상한 형태가 되고 두 번째 곡선은
예상과는 전혀 다른 형태가 됩니다.
차이점이 무엇일까요?
매.개.변.수.
라는 표현에서 알 수 있지만 주로 사용되는 t라는 문자는
이 곡선의 주인공이 아닙니다. t를 매개로 하여 결국 xy평면에
그래프를 그리는 것이기 때문에 도함수의 부호변화, 극대, 극소의 위치
같은 것들은 x중심으로 분석되어야 합니다.
첫 번째 곡선은 t와 x의 증가 방향이 일치합니다.
그런데 두 번째 함수는 그렇지 않습니다.
상세히 살펴보지 않고 극대, 극소인 부분만 보더라도
첫 번째 곡선은 t=-1, 1일 때 x=-2, 2 로서 순서가 일치합니다.
극대, 극소 순으로 xy평면에 나타나죠.
반면, 두 번째 곡선은 t=0, 1, 2 일 때, x=0, -1, 0 이 됩니다.
심지어 값이 중복되는 군요. 그래서 이 경우 xy평면에 그래프를
그리면 t의 증가방향과 x의 증가 방향이 일치하지 않아서 전혀
다른 형태의 그래프가 나오는 것입니다.
그렇다면 어떻게 대비를 해야 하느냐.
두 번째와 같은 곡선은 단순계산 문제보다는 ㄱ,ㄴ,ㄷ 문제로 출제될
가능성이 높습니다. 시험장에서 처음보고 이러한 특징을 발견하기란
쉽지 않기 때문에 평소에 한 번이라도 이러한 생각을 해본 경험이
중요한 것이죠.
이 글을 읽고 있는 여러분은 이미 알게 되었기 때문에 이
제 신경쓰지 않아도 될 겁니다.
그리고 매개변수 곡선을 보았을 때 습관적으로 t에 관한 함수로
표현된 x가 증가함수인지 확인해보기만 하면 됩니다.
만약 증가함수라면 개형에 의존하여 풀이를 할 수 있는 것이고,
아니라면 수식에 의존하여 풀어나가면 되는 것이죠.
자, 이제 또다른 주제로 넘어가 볼까요.
x가 증가함수여서 개형을 잡는 것이 가능한 상태에서도 양함수에서는
쉽게 볼 수 없는 특징을 하나 더 가지고 있습니다.
그래프 개형을 마무리 할 때, 도함수, 이계도함수를 충분히 분석했다
하더라도 정의역의 경계값에 대한 극한계산을 통해 끝부분이 수렴하는지
발산하는지를 체크해보아야 하죠.
평가원에서 좋아하는 y=t 라는 x축과 평행한 직선이 곡선과 만나는 점을
분석해야 하는 문제같은 것을 풀 때 수렴발산 여부는 매우 중요한 역할을 합니다.
그런데 2017년 6월 평가원 16번 문제 기억하나요?
y=x+t 가 사용되었는데 이 경우 기울기가 1인 점근선의 존재 유무가
문제에 같은 느낌으로 영향을 끼치게 됩니다.
위의 문제는 그러한 점근선이 존재하지 않지만 조금씩 변형되고
어려워지는 평가원 문제의 특성상 앞으로는 출제될 가능성이 높은 것이죠.
양함수로 이러한 곡선을 만드는 것은 형태가 너무 노골적입니다.
과 같이
y=x 뒤에 수렴하는 형태의 함수가 더해진 경우,
기울기가 1인 직선이 만들어집니다.
이렇게 출제할 경우 새롭지만 눈치채기 쉽기 때문에
고난도 문제로 출제하기엔 적합하지 않죠.
그런데 매개변수로 출제할 경우, 앞에서 사용한 함수를 다시 한 번 살펴보죠.
눈치 채셨나요?
도함수가 항상 1보다 작은 값일 뿐만 아니라 1로 수렴합니다.
삼차곡선과 유사하게 생겼을 것 같지만 끝부분이 쌍곡선처럼 발산은
하되 접선의 기울기가 1을 넘지못하는 형태가 되는 것이죠.
정확하게 양쪽 끝부분의 점근선의 방정식을 구하는 것은 힘들지만
기울기가 1을 넘는 직선과 두 번 만날 수 없다는 것은 알 수 있습니다.
새롭지 않은가요?
아주 복잡하진 않지만 관찰력이 매우 뛰어나야 발견할 수 있는
사실이기 때문에 고난도 문제에 적합한 함수로 사용하고 이를
이용한 문제를 출제하기에 매우 적합한 형태의 곡선입니다.
그렇다면 어떻게 대비할 것인가?
역시나 여러분은 이 칼럼을 읽고 있으니, 이미 대비가 된거죠.
매개변수는 이러한 특징을 가지고 있다는 사실을 인지하고
개형을 마무리 할 때, 도함수의 끝부분에 대한 극한을 살펴보기만 하면 됩니다.
지금까지 매개변수곡선의 그래프를 활용한 문제가 출제되었을 때,
주의해야할 점 두 가지를 살펴보았습니다.
우리가 해야 할 것은 이제 두 가지입니다.
위의 내용을 숙지 할 것,
평가원에서 이 글을 보지 않길 기도하는 것^^
예측 못한 유형을 내고 싶어 할 것이니까요
6평이 어느덧 코앞에 다가왔네요.
이 시기엔 지치지 않는 것도 중요한 것 같습니다.
놀고 싶은 마음 눌러 담는 것도 중요하구요.
여러분. 여러분 가정의 평화는 여러분 손에 달려있습니다.
부디 6월 평가원 대비 잘하여 가정의 평화를 유지하도록 합시다.
그럼 저는 다음에 더 알차고 유용한 주제로 찾아오도록 할게요. 수고하세요~
---------------------------------------------------------------
도움이 많이 되셨기를 바랍니다^^
Rise 5월 예비시행은 다음주 제 칼럼과 함께 공지됩니다~
화이팅하세요!!!!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
근데 네들도 나를 무시하면 진짜 나 무시무시해지는거야 각오해 나 무시무시한 사람이거든
-
작년에 대성 사전예약이 앞으로 1년 있을 패스 중에 가장 혜자 였는데 올해도 아마...
-
외로우니까 오르비를 들락거리고
-
킬링캠프모의고사는 몇점이상 나오는 사람에게 의미가 있을까요?(+실모추천좀 1
너무 어려워서 뇌절와서 한 50점 나오는데 이래도 모래주머니효과가 있을까요?
-
엡스키마 다듣고 실모도 많이 풀었고 독서는 수특수완 다 봤고 뭘 만나도 그래도...
-
강기원모 92 0
28찍맞이라 사실상 88 30번 뭐가 뭔지를 모르겠고 28번은 그냥 내가 못하는...
-
오늘은 레슨받으면서 혼나는날~
-
독서 연계로 1
금투세 지문 나오면 재밌을 것 같아요
-
실모 vs 수특 수완
-
자퇴생 찐따는 혼밥해야해요,,,
-
밖에서 음식 두번 사먹는 값이라 생각하면 또 그정도는 아닌것 같기도하고
-
와랄랄랄랄랄라 아주 그냥
-
현역때 수시일반으로 서울대 낮공중에 하나 붙었습니다. 그러나 웟공에 대한 미련을...
-
오 대전 생각보다 되게 괜찮은데?? 대전 생각보다 진짜 재밌는데??? 대전........
-
댓달아주삼 4
인터넷친구도 없는거가틈,,,,,,,
-
[美대선] "트럼프 일부 참모들 '조기 승리선언' 건의" 0
건의 수용할지 여부는 확실치 않아 마러라고서 기부자·친구·가족 등과 개표중계 시청...
-
이게 말이 되는거였음
-
ㄱㅊ정시로가면돼 6
수시로 합격했으면 정시공부한게 아깝잖아 교재비랑 패스비랑 응시비용이 아깝잖아 정시로...
-
삼각함수 덧셈정리 + 이중근호
-
일단 생지하다가 지구과학 너무 불안정하게 나오는거같아서 6모 이후로 생윤으로...
-
궁금하네요 그냥 논란 좀 되고 끝나는 건지 아님 더 있는지
-
저 감기걸려서 훌쩍거려요 우우웅
-
?
-
미용실 가격 졸비싸네 21
그냥 혼자머리 자를까 대충 숱가위 사서 쓱삭쓱삭 앞머리 싹둑싹둑 하면 되지 않을까
-
학교에서 자습을 주긴하는데 50분 자습 10분 쉬는시간 계속 이패턴이라 국어나 영어...
-
11덮 94 이감 80초중 상상 50-60점대
-
사설 국어 1
안풀어야겠다 나름 69모 12인데 문학은 정답 근거봐도 이해가 안가고 뭔소리인지도...
-
선지가 작수급이었다면 골목 안보다 더 어려웠을 듯
-
책구매할 때 결제 확인 창이 안뜨고 아톰사이트에서 구매하라는 창이 떠서...
-
이건 실력부족이므로 문법 전부 외운 다음 문제에 적용해야겠음
-
11덮 국어 0
독서문학화작 35 30 15 써서 문학만 10틀했는데 뭐가 문제일까요.. 연계가...
-
왜냐 면 내가 학원 그만뒀거든
-
사회규범의 통제력 강화를 일탈행동의 대책으로 제시한다 이거 개념강의에서나 실모에서나...
-
친구가 호머식 2등급이라 그러는데 맞으면 맞은거고 틀리면 틀린거 아닌가 해서요.....
-
수능 시뮬레이션 5
유튜브에 쳐서 들으면서 하는데 한숨빌런이 진짜 만나면 최악이겠다...한지문에 한번꼴로 한숨쉬네;;
-
실모풀면 맨날 독서만 6틀 7틀해서 2등급떠요.. 한 두 문제만 더 맞추고 싶은데...
-
오리 꽥꽥 12
-
국어 순서 1
공통 + 선택 포함 고전소설 제일 힘들어해서 고전소설 맨 마지막에 풀면 거의...
-
오르비 교재 0
오르비 클래스에서 교재구매할 때 결제 확인창이 원래 안뜨나요?
-
올해 독서 1
어느정도 난이도일 거 같나요 아무도 모르는 거긴 하지만 독서 약하고 문학 잘해서...
-
어느정도 푸셨어요 다들?
-
죽을까 그냥
-
상상 5-9 0
마킹 다 하니 79분 91 독서 인문 3점틀 문학 마지막 고전시가 2점틀,...
-
차엿어 .. 여자랑 단 둘이 만나는거 부담스럽대 .. 말도 안된다 ..
-
케이비에스ㅅㅅㅅ 한국바앙소옹 (띤딘띤딘딘딘 디리링~) 뚜 뚜 삐--- 빰바밤 빠밤밤밤
-
화작 0
제가 항상 실모를 보면 화작에서 시간을 줄이려고 노력을 해봐도 빠르면17분 늦으면...
-
수능시험이라는게 3
출제자가 개념들을 엮어서 구조를 만들어내면 수험생들은 그 구조를 추론해서 맞추는건데...
-
공콘 시즌2때 가서 오르비언들 많이 보곤 했는데 이젠 추억이네
-
논술날 봐요~~~~~ 제가 안전하게 통제하겠습니다!!!
매개변수 살짝만 꼬면 많이 틀릴거 같네요
ㅎㅅㅇ 모의고사에 실려있는 문제 보고 느꼈었는데
네 여기부분 음함수 미분과 함께 대표적인 킬러파트가 될 수 있는 부분입니다^^
제가 곧 좀 더 상세한 예를 가지고 캐스트를 하나찍을 예정입니다~ 촬영후 알려드릴게요~ 손우혁t
레벨 70 언제되심 ㅠㅠ
곧 보실수 있지 않을까요?^^
뭔말이지..?
어렵나요?ㅠ
1. 매개변수 t에 대해 나타낸 일반적인 함수 f(x,y)의 그래프 개형을 어떻게 알 수 있는지요? 극댓값과 극솟값은 알 수 있겠으나, 일반적인 매개변수를 이용한 함수의 개형은 추정하기 어려워보입니다.
2. 마지막에 올려놓은 식에서 도함수가 1보다 항상 작은 상태에서 1로 수렴한다는 것은 어떻게 알 수 있는가요 ?
3t^2-3<3t^2+1
아..그렇군요 1번에 대한 답도 알 수 있으까요
사실 도함수를 통해 매개변수곡선을 그린다는 것은 그야말로 대략적인 개형을 잡는 것으로 수학적인 의미보다는 수능에서 출제할만한 내용이기 때문에 공부해둔다고 생각하세요~
일반적인 추정은 어려워보인다는 것이 제 글의 핵심이기도해요 제약적인 상황에서만 개형을 잡을 수 있으니까요
본문에서 t=-1,0,1일 때 극대극소라고 단정하는 게 위험할 수 있다고 말씀하셨는데
그 값만 대략적으로 구할 수 있을 뿐, 극값이라는 것은 개형을 알아야 하는 것 아닌가요?
이계도함수를 구할 수도 없는 노릇이구요.
그쵸 그래서 x가 증가함수임을 확인하는것이 필요한거구요
이해가...
어려운가 보네요ㅜ
미2랑 기벡이랑 섞일수있나요? 과목간의 융합이랄까...
사실 작년 수능 21번을 음함수 미분으로 수월하게 풀어버린 친구들한테는 미적2와 기벡 파트의 미분은 나누어서 생각할 부분이 아닌거죠~
와 생각해보지 못했던 부분이네요.. 좋은 칼럼 감사합니다. 그동안 매개변수를 너무 쉽게 생각했었네요.
도움이 되셨다니 다행이네요^^
저도 감사해요~
1. 매개변수가 xy평면의 그래프를 나타내지 않는다. 대략적인 개형일 뿐.
2. 따라서 x와 t가 증가관계에 있는지 확인한다.
3. t를 통한 도함수의 극한값을 생각한다.
사실 2번에서 증가관계냐 감소관계냐 이것도
상당히 중요하고요^^
Etk에서 다룹니다ㅎㅎ
칼럼 보면서 평가원에서 이걸 보면 안될텐데... 생각했는데 역시나 적으셨네요ㅎㅎ
좋은칼럼 추천합니다.^^
뭐 저희들이야 듣보니까요^^
평가원 걱정은 뭐ㅎㅎ
개인적으로 궁금한건데요... 예시로 드신 두번째 매개변수 식을 함수라 부를 수 있나요? x=t^3-2t y=t^3-3t^2 이거요!
매개변수 곡선을 함수로 인식할땐 정의역은 실수 t 공역은 (x,y)평면위의 점 으로 인식합니다
고교교과과정을 넘기때문에 보통은 매개변수로 만들어지는 곡선이라고 하지요
음함수곡선도 마찬가지이구요